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Motivation:
Communications receivers resistant to man-made interference
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Replacing certain analog filters in the receiver by ANDLs provides resistance to
man-made interference

ANDLs vs. linear: baseband SNR (14/18)
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Impulsive nature of interchannel interference
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Qualitative illustration of di↵erent contributions into the interference
which a receiver (RX) experiences from a transmitter (TX)

TX OOB interference in the RX channel (part II of the total interference) can appear
impulsive under a wide range of conditions, and can degradate the RX communication

signal as it raises the noise floor in the RX band

Impulsive interference (8/18) Increasing peakedness (10/18)
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Impulsive nature of interchannel interference:
TX OOB interference in the RX channel (part II of the total interference)

⇥

AT (t̄) fc

⇥
lowpass

w(t) impulse
response

P = I2 + Q2

fc+�f

For example, it can appear as an impulsive pulse train

P(t,�f ) =
1

(T �f )2n

X

i

|↵i |2 h2 (t̄ � t̄i )

for su�ciently large T and/or �f
T is symbol duration (unit interval)
t̄ is nondimensionalized time, t̄ = 2⇡

T
t

h(t̄) = T
2⇡w(t), w(t) is impulse response of lowpass filter

AT (t̄) is modulating signal
|↵i | is magnitude of discontinuity of A(n�1)

T (t̄) at t̄i

EURASIP J Adv Signal Process 2011, 2011:137
Proc. IEEE Radio and Wireless Symposium, Phoenix, AZ 2011:118-121
Experimental evidence: EURASIP J Adv Signal Process 2012, 2012:79

E↵ects of symbol rates and pulse shaping (9/18)
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Impulsive nature of interchannel interference:
Instantaneous power response of a quadrature receiver
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Simulation parameters (19/18)
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Impulsive nature of interchannel interference:
Average power and peakedness
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Measure of peakedness (20/18) Simulation parameters (19/18)
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Impulsive nature of interchannel interference
Impulsive interference: Part II dominates
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For a su�ciently large |�f | (e.g. 125MHz), impulsive component (part II) dominates

TX RX interference (4/18)
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Impulsive nature of interchannel interference:
E↵ects of symbol rates and pulse shaping
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Impulsive nature of interchannel interference:
Increasing peakedness

⇥

fTX = 2GHz

⇥
lowpass

40MHz

I(t)

Q(t)

fRX = 2.065GHz

notch

65MHz

I(t)

Q(t)
TX RX

I

I/Q traces at fRX = 2.065 GHz

0 2 4 6 8 10 12

Q

t ime (µs)

a
m

p
li
t
u
d
e

−100 −50 0 50 100
−220

−210

−200

−190

−180

−170

−160

−150

−140

−130

PSDs at fRX = 2.065 GHz

P
S
D

(
d
B
m

/
H

z
)

frequency (MHz)

-0.5dBG 10.8dBG

Green lines and text: before notch Blue lines and text: after notch

Notch filter reduces sub-Gaussian part of interference without a↵ecting signal of interest and/or
PSD of impulsive interference around baseband, enabling its e↵ective mitigation by NDLs

TX RX interference (4/18)
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Nonlinear Di↵erential Limiters (NDLs)

NDL

↵
input

z(t)

output

⇣(t)

For example, for a second order linear lowpass filter:

⇣(t) = z(t)� ⌧ ⇣̇(t)� (⌧Q)2 ⇣̈(t)

⌧ is time parameter, Q is quality factor

A particular NDL example:

⌧(|z � ⇣|) = ⌧0 ⇥
(

1 for |z � ⇣|  ↵⇣
|z�⇣|

↵

⌘�
otherwise

� > 0

Canonical Di↵erential Limiter (CDL) for � = 1

Di↵erential over-Limiter (DoL) for � > 1
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CDL time parameter τ (|z − ζ |)

More on NDLs: US patent 8,489,666 (16 July 2013)
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NDL-based mitigation of out-of-band interference:
SNRs in the receiver as functions of the NDL resolution parameter

40MHz

lowpass A/D

A/D

NDLnotch

65MHz

baseband

100 101

−10

−5

0

5

Baseband SNRs as functions of resolution parameter

resolution parameter (α/α0)

S
N

R
(
d
B
)

SNR for AWGN only

SNR for AWGN + OOB

(linear fi l ter)

Green: w/o notch Blue: with notch

12/18



Motivation Impulsive interference NDLs NDL-based interference mitigation Concluding remarks

NDL-based mitigation of out-of-band interference:
Adaptive NDLs (ANDLs)

Adaptive NDL (ANDL) configurations
contain a sub-circuit (characterized by a gain parameter)

that monitors a chosen measure of the signal+noise mixture
and provides a time-dependent resolution parameter ↵ = ↵(t)

to the main NDL circuit,
making it suitable for improving quality of non-stationary signals

under time-varying noise conditions

More on NDLs/ANDLs:

Nikitin AV, Davidchack RL, Sobering TJ: Adaptive analog nonlinear algorithms

and circuits for improving signal quality in the presence of technogenic

interference. To be presented at the 2013 IEEE Military Communications
Conference (MILCOM 2013), San Diego, CA, 18-20 November 2013

Nikitin AV: Method and apparatus for signal filtering and for improving

properties of electronic devices. WO 2013/151591 (10 October 2013)

http://www.avatekh.com
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NDL-based mitigation of out-of-band interference
ANDLs: Baseband signal quality of an ANDL-based receiver
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Baseband signal quality of an ANDL-based receiver is largely independent of the
strength of the out-of-band interference from a nearby transmitter

Communications receivers resistant to man-made interference (3/18)
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NDL-based mitigation of out-of-band interference
ANDLs: PSDs in signal passband
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NDL-based mitigation of out-of-band interference
ANDLs: Time domain I/Q traces in baseband
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Concluding remarks

Interference induced in a communications receiver by external
transmitters can be viewed as a wide-band non-Gaussian noise
a↵ecting a narrower-band baseband signal of interest

At any given frequency, a linear filter a↵ects both the noise and the
signal of interest proportionally, and cannot improve the baseband SNR

A linear filter can be converted into an NDL by introducing an
appropriately chosen feedback-based nonlinearity into the response of
the filter

NDLs may reduce the spectral density of a non-Gaussian interference
in the signal passband without significantly a↵ecting the signal of
interest, thus increasing the capacity of a communications channel

NDLs are designed to be fully compatible with existing linear devices
and systems, and to be used as an enhancement, or as a low-cost
alternative, to the state-of-art interference mitigation methods
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Concluding remarks:
Digital NDLs

Increasing sampling rate of high-resolution converters in order to enable
use of digital NDLs would be impractical

Instead, low-bit high-rate A/D converters should be used to provide input
to digital NDLs. Then NDL outputs can be downsampled to provide

desired high-resolution signals at lower sampling rates

wideband
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low-bit,
high-speed A/D

digital
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A/D

high-bit,
low-speed A/D

decimation
lowpass filter

(a)
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Analog (a) and digital (b) NDL deployments
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Appendix I
Simulation parameters

The TX signal used in the simulations on pages 6, 7, 9, 10, and 12 was a random
QPSK signal. In all simulations except those shown on page 9 the symbol rate was
4Mbit/s (unit interval T = 250 ns), and an FIR RRC filter with the roll-o↵
factor 1/4 and the group delay 3T was used for pulse shaping. The average TX
signal power was 125mW (21 dBm), and the path/coupling loss at any
RX frequency was 50 dB, except for the TX signals shaped with the filters shown
by the black and green lines on page 9, where it was 20 dB

The RX lowpass filters were 8th order Butterworth filters. A 5 dB noise figure of the
receiver was assumed at all receiver frequencies fRX () �172 dBm/Hz for the total
AWGN level at room temperature). The incoming RX signal used on page 12 was a
random QPSK signal with the rate 4.8Mbit/s. An FIR RRC filter with the roll-o↵
factor 1/4 and the group delay 3T was used for the RX incoming signal pulse
shaping, and the same FRI filter was used for the matched filtering in the baseband.
The PSD of the RX signal without noise was approximately �167 dBm/Hz in the
baseband, leading to the S/N ratio without interference of approximately 5 dB

Instantaneous power response of a quadrature receiver (6/18)

Average power and peakedness (7/18)

E↵ects of symbol rates and pulse shaping (9/18)
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Appendix II
Measure of peakedness

Peakedness of a complex-valued signal z(t) = I (t) + iQ(t) can be
expressed in terms of the measure

KdBG(z) = 10 lg

✓
h|z|4i�|hzzi|2

2h|z|2i2

◆
,

where the angular brackets denote time averaging. This measure is
based on an extension of the classical definition of kurtosis to
complex variables

“decibels relative to Gaussian” (dBG) - i.e. in relation to the
kurtosis of the Gaussian (aka normal) distribution

KdBG vanishes for a Gaussian distribution

sub-Gaussian and super-Gaussian distributions have negative
and positive dBG peakedness, respectively

Average power and peakedness (7/18)
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