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Abstract 
We present an approach to the analysis of signals based 

on analog representation of measurements. 
Methodologically, it relies on the consideration and full 

utilization of the continuous nature of a realistic, as 
opposed to an idealized, measuring process. 

Mathematically, it is based on the transformation of discrete 
or continuous signals into normalized continuous scalar 

fields with the mathematical properties of distribution 
functions. This approach allows a simple and efficient 

implementation of many traditionally digital analysis tools, 
including nonlinear filtering techniques based on order 

statistics. It also enables the introduction of a large variety 
of new characteristics of both one- and multi-dimensional 

signals, which have no digital counterparts. 
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DISCLAIMER 

Some of the definitive statements made 
in this presentation are intended to 

provoke rather than provide rigorous 
academic definitions. They do reflect, 
however, the principles to which the 

authors adhere in spirit if not in letter. 
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Signal Analysis through Analog 
Representation 

•  Introduction 
–  Why analog?  What is analog? 
–  Some illustrative examples & demos 
–  Simplified model(s) of a measurement 

•  Basic methodological principles & tools 
–  Idealized and realistic threshold 

distributions & densities 
•  Extended examples 

–  Nonlinear filters based on order statistics 
–  Multivariate counting measurements 
–  Real-time entropy-like measurements 

•  Summary & Discussion 
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Why analog?  What is analog? 
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Why analog? 
•  Physical phenomena are analog, and best 

described by (partial) differential equations 
–  Continuous measurements better relate to real physical 

processes 
–  Continuous quantities can enter partial differential 

equations used in various control systems 

The only obstacle to robust and efficient analog 
systems often lies in the lack of appropriate analog 
definitions and the absence of differential equations 
corresponding to the known digital operations. When 

proper definitions and differential equations are 
available, analog devices routinely outperform the 
respective digital systems, especially in nonlinear 

signal processing. 
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What is ‘analog approach to 
signal analysis’? 

•  Considering finite precision and continuity of 
real physical measurements in 
–  Mathematical modeling of measurements 
–  Treatment & analysis of data 
–  Instrumentation design 

and / or 
•  Formulating signal processing tasks in terms 

of continuous quantities (differential calculus) 
–  E.g., in terms of continuous threshold distributions / densities 
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Analog solution(s) to traditionally 
‘digital’ (discrete) problems of 

signal analysis offer 
•  Improved perception of the measurements through 

geometrical analogies 
•  Effective solutions of the existing computational 

problems of the nonlinear (such as order statistic) 
methods 

•  Extended applicability of these methods to signal 
analysis 

•  Implementation through various physical means in 
continuous action machines as well as through 
digital means or computer calculations 

•  Wide range of signal analysis tools which do not 
have digital counterparts 
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Some illustrative examples & 
demos 

•  Filtering: Noise and jitter suppression 
•  Visualization / Quantification / 

Comparison of signals 
•  Multivariate counting measurements 
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Noise suppression 
 

Left:  Noisy image. Center:  Time averaging. 
Right:  Spatio-temporal analog rank filtering. 
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Jitter suppression 
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Jitter suppression 
 

Left:  Unsteady image. Center:  Time average. 
Right:  Stabilized image. 
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Visualization / Quantification / 
Comparison of signals through 

density flows / streams 
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Real-time PhS density measurements 
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Quantile density, domain, and 
volume 
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“That’s where the players are” 
Quantile domains of amplitude density 



20 

“That’s where the action is” 
Quantile domains of counting density 
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Suppression of omnidirectional flux by analog 
coincidence counting 
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Simplified model(s) of a 
measurement 

– Basic methodological principles & tools 
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Measuring x(t): Value of x at time t 

D

t 

D > x(t) 

D < x(t) 

x(t) 
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Measurement ≡ Comparison 
with reference 

Measurement by means of an ideal 
discriminator: 

•  θ  is Heaviside unit step function 

•  D  is displacement variable (threshold) 
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Output of an ideal discriminator θ [D-x(t)] indeed 
represents an ideal  measurement of x(t) 

•  Can use θ (0) = 1/2 

 
 
 
 
 
•  θ [D-x(t)] = 1/2 describes  x(t) as a curve in 

the plane (t,D) 
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Idealization of a measurement process 
is convenient, and often necessary to 

enable meaningful mathematical 
treatment of the results. However, when 

such an idealization is carried to 
extremes, it becomes an obstacle in 

both the instrumentation design and the 
data analysis. 
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What is wrong with an ideal discriminator? 
- It is “too good to be true:” 

•  Too fast (changes state instantaneously) 
•  Too accurate (capable of comparison with infinite precision) 
•  Too unambiguous (has no hysteresis) 

Whatever device is used as a threshold discriminator, 
it will have finite resolution, hysteresis, time lag, and 

other non-ideal properties. 
 

Accordingly, we need to replace the ideal 
discriminator with non-ideal functions which emulate 

the essential properties of the real-world 
measurements. 
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Trivial but often forgotten 
1.  All physical phenomena are analog in nature 
2.  Measurements result from interaction with instruments 
3.  Interpretation of data requires understanding of this 

interaction 

=> Basic methodological principles 
1.  Signal processing should be formulated in terms of 

continuous quantities 
2.  Data analysis should relate to real physical measurements 
3.  Mathematical models & treatment should incorporate the 

essential properties of data acquisition systems 

Basic methodological principles & tools 



NOT DISPLAYED 29 

Before we go further 
Basic tools and formulae (I):  Dirac δ –function δ (x) 

•  Is an (even) density function satisfying the conditions 
 

•  Appears whenever one differentiates a discontinuous function, 
e.g., 

 

•  While making physical sense only as part of an integrand, can be 
effectively used for formal algebraic manipulations, e.g., 



NOT DISPLAYED 30 

Basic tools and formulae (II):  
Convolution 

•  If f(x) is an incoming signal and w(x) is the impulse 
response of an acquisition system, then w(x)*f(x) is 
the output signal 

 
 
 
•  Differentiation: 



31 

Idealized and realistic 
threshold distributions & 

densities 
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Measurements with an 
‘accurate but slow’ 

discriminator 

§  Can be modeled as a convolution of the output of 
the ideal discriminator θ [D-x(t)] with an impulse 
time response function  

 
§  Can be interpreted as time dependent threshold 

distribution  Φ(D,t) = w(t)*θ [D-x(t)] 
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Note that 
§  Φ(D,t)  is a function of two  variables, time t and 

threshold D 
§  0 ≤ Φ(D,t) ≤ 1  is a non-decreasing function of threshold 
§  For a continuous w(t),  Φ(D,t)  is a continuous function 

of time 
§  The partial derivatives of  Φ(D,t)  can be written as 

      and 

–  d  is Dirac d-function 

§   ϕ (D,t) ≥ 0  is a threshold density  function 
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Probabilistic analogies and 
interpretations 

§  Distribution Φ(D,t) and density ϕ (D,t) are defined for 
deterministic as well as stochastic signals 

§  Bear formal similarity with probability function and 
density 

§  Enable the exploration of probabilistic analogies and 
interpretations 
–  Example:  If s is a random variable with the density 

w(t-s), then Φ(D,t) = w(t)*θ [D-x(t)]  is the probability 
that x(s) does not exceed D 

§  Allow us to construct a variety of ‘statistical’ estimators 
of signal properties, e.g. those based on order statistics 
–  Example:  Median  of x(t) within the window w  is Dm 

= Dm(t) such that  Φ(Dm ,t) = ½  => Dm  is the output of 
the median filter 
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Nonlinear filters based on 
order statistics 
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Nonlinear filters based on 
order statistics 

•  There are many signal processing tasks for which 
digital algorithms are well known, but corresponding 
analog operations are hard to reproduce 

•  One widely recognized example is signal processing 
techniques based on order statistics 

•  Traditionally, determination of order statistics 
involves the operation of sorting or ordering a set of 
measurements 

•  There is no conceptual difficulty in sorting a set of 
discrete measurements, but it is much less obvious 
how to perform similar operations for continuous 
signals 
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EXAMPLE:  Ideal analog quantile filters 
§  Dq(t) is defined implicitly as Φ[Dq(t),t] = q,  0< q <1 
§  Φ(D,t) is a surface in the three-dimensional space (t,D,Φ) 
§  Dq(t)  is a level (or contour) curve obtained from the 

intersection of the surface  Φ(D,t)  with the plane  Φ = q 
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§  From the sifting property of the Dirac δ -function: 

 
–  Leads to analog  L-filters and α-trimmed mean filters 
 

§  From a differential equation of a level curve: 
 
 
–  Dq(t) will follow the level curve given a proper initial 

condition 
–  Enables implementation of quantile filters by analog 

feedback circuits 
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Analog  L-filters and α-trimmed 
mean filters 

§  Linear combination of quantile filters: 
 

–  WL is some (normalized) weighting function 

§  Particular choice of  WL as a boxcar probe ba of 
width 1-2a  centered at ½  leads to α-trimmed 
mean filters: 

 
–  Running mean filter when a = 0 
–  Median filter when a = 1/2 
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       Feedback analog rank filters 
 
Ideal filter                                           is impractical: 

§  Denominator                                                                     
cannot be directly evaluated 

§  Quantile order q  is employed  only via the initial 
conditions   =>  
–  Any deviation from the initial condition will result in 

different order filter 
–  Noise will cause the output to drift away from the chosen 

value of  q 
§  Convolution integrals in the right-hand side need to 

be re-evaluated (updated) for each new value of Dq 
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‘Real’ discriminators and probes 
§  δ -function in the expression for the threshold density ϕ (D,t)  

is the result of the infinite-precision idealization of 
measurements 

§  All physical observations are limited to a finite resolving 
power, and the only measurable quantities are weighted 
means over nonzero intervals  => 

§  A more realistic discriminator is a continuous function FΔD(D)  
which changes monotonically from 0 to 1 so that most of this 
change occurs over some characteristic range of threshold 
values  ΔD 
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§  Ideal density cannot be measured / evaluated 
  

 

–   sum goes over all ti such that x(ti ) = D 
 

=> we need to know all threshold crossings within w(t) 
=> ϕ (D,t) is infinite at each extremum of x(t) within w(t) 

§  ‘Real’ density can be viewed as the threshold 
average of the ideal density with respect to the 
test function  fΔD(D): 

 
 

§  No problem measuring / evaluating the real 
density 



NOT DISPLAYED 43 

Stability with respect to quantile 
values 

§  Parameter ν  is the characteristic convergence speed (in 
units ‘threshold per time’) 

§  Since Φ(D,t) is a monotonically increasing function of D 
for all t, the added term will ensure convergence of the 
solution to the chosen quantile order q regardless of the 
initial condition 

§  Consideration of the inertial properties of an acquisition 
system leads to a simple ‘natural’ choice for ν	
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Design simplification from the consideration 
of a realistic measurement process 

§  Inertial properties of many physical sensors are well 
represented by the transient characteristic 

 
–  τ  is characteristic response time 

 => 
§  Total impulse time response of a typical measuring 

device is 
 

–    
–   wT  is desired (or designed) impulse response 

§  Time derivative of w(t) can be expressed as 
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We can choose the characteristic speed 
of convergence ν  as 

•   q is quantile order, 0< q <1 
•   hτ*wT = w  is the total impulse time response 
•   FΔD and  fΔD are the discriminator and its 

associated probe 
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Final step:  Approximations for 
feedback circuits 

The right-hand side of the equation for dDq/dt 
can be approximated in various ways, e.g. 

§    

–    
 

§  Analog rank selector among N signals xk(t): 
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(1) Introduction of real discriminators and 
(2) consideration of inertial properties of 

measuring devices ( e.g., w = hτ*wT )  leads 
to various generalized rank filters for 

continuous signals, including simple and 
efficient implementations of feedback 

quantile filters / selectors 
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Quartile outputs (solid black lines) of an analog quantile 
filter 
 
 

•  Respective outputs of a rank filter in a rectangular window wT  are 
shown by dashed lines 
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Analog rank selector 
 

for four signals (x1(t) through x4(t), thin dashed lines) 
•  Thick dashed line shows the median (q=1/2) 
•  Solid line shows the 3rd octile (q=3/8) 
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Removing static and dynamic impulse noise from a monochrome 
image by the filter 
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Multivariate counting 
measurements 
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D

t 

D > x(t) 

D < x(t) 

x(t) 

Counting measurements: 
Crossing of D by x(t) 
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Multivariate counting 
measurements 

•  Various physical measurements deal with rates 
of occurrence of different features of a signal. 
These features can be viewed as discrete 
coincidence events, e.g.: 
–  Crossings of  x(t) with a given threshold D 
–  Occurrence of extrema of x(t) of certain amplitude(s) 
–  Various other conditional outcomes 

•  Example: 
–  The rate R of crossings of D by a scalar signal x(t), 

measured by an ideal discriminator can be written as 

–  The rate measured by a real discriminator FΔD  is 
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Basic generic measuring module 
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Measuring rates of crossings of signal x(t) with 
threshold D by a fast real discriminator 
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Derivatives of x(t) do not pose a problem in the analog 
domain 

•  Physical sensors have continuous time responses (typically exponential) 
•  Output signal is a convolution of the input with these responses 
•  Intermediate signals are available before and after some stage(s) of 

integration 
•  Derivatives can be obtained as linear combination of the intermediate signals 

Obtaining time derivatives of the output signal x(t) as the real 
time difference between intermediate signals 
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Simplified schematic of a positive slope 
threshold crossing counter 
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Modulated threshold density 
 
 

where K(t)  is a unipolar modulating signal 
•  Amplitude ( K(t) = const. ) and counting ( K(t) = |dx/dt| ) 

densities for the fragment of a signal from a damped 
oscillator 
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How do amplitude and counting distributions of a 
continuous signal relate to the distribution of a digitally 

sampled signal? 
•  Amplitude distribution relates to the distribution of a time-sampled signal 

•  Counting distribution relates to the distribution of a threshold-sampled 
signal 



60 

Amplitude and counting densities for vector signals 
can be measured by a probe 

•  Amplitude density 
–  Characterizes time the signal spends in a vicinity of a certain point 

in the threshold space 
•  Counting density 

–  Characterizes frequency of ‘visits’ to this vicinity by the signal 
–  Numerator is the counting rate 

 
–    



61 

Amplitude and counting densities for the 
fragment of a signal from a damped oscillator 



62 

Counting maxima in a signal 
Panel (a): Fragment of a signal in the interval [0, T] 

Panel (b): Density of maxima 
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Multivariate counting measurements 
Using conventional analog oscilloscope for counting 

signal’s stationary points 
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Using analog oscilloscope for counting signal’s 
stationary points 
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Real-time entropy-like 
measurements 
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Basis for real-time entropy-like 
measurements 

•  fR(0)  is the maximum possible value of the density f  we can 
get from our measurements by the probe  fR 

•  fR(0)-1 is the elemental phase volume of the threshold space 
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Summary 
§  Consideration of finite precision and inertial 

properties of data acquisition systems allows us to 
model measurements by ‘slow real discriminators’ 

§  Various signal processing tasks can be formulated 
in terms of continuous time dependent distribution 
and density functions 

§  Analysis through analog representation allows 
simple and efficient implementation of traditionally 
digital-only techniques, and the introduction of new 
signal characteristics. Examples include: 
–  Nonlinear filtering techniques based on order statistics 
–  Multivariate counting measurements 
–  Real-time entropy-like measurements 



AvaTekh LLC 

Robust analog approach to data acquisition and analysis 
 
 

AVATEKH  =  AVAtar  +  TEKHnē 
 
 

AVATAR  =  Analysis of VAriables Through 
Analog Representation 

 
Greek TEKHNĒ  =  art, skill 



70 

AVATAR 

Analysis of VAriables Through Analog Representation 

“– while linkage to macroscopic machinery has not proven cost-
effective, the case has turned out to be otherwise for monitoring 
and controlling scientific instruments. For this it is inadequate to 

supply the operating brain with numbers such as voltmeter 
reading and nothing else. For example, a spectrum is best 

considered–rationally appreciated–when the operator sees it and, 
simultaneously, knows the exact wavelength and intensity of 

every line. Through appropriate hardware and software, this can 
now be done.”  – From “The Avatar” by Poul Anderson 
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Backup slides 
(no handouts) 
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•  | f 0(xi)| is the absolute value of the 
derivative of  f(x) at xi 

•  sum goes over all xi such that f(xi) = a 



NOT DISPLAYED -- NO HANDOUTS 73 

Boxcar probe ba 
in the equation for a-trimmed mean filter 
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Threshold distribution / density 
measured by a slow real 

discriminator / probe with hysteresis 
•  Distribution Φ(D,t): 
 
 
 
•  Density ϕ (D,t): 
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Quantification of “visual” similarity between 
two signals through overlapping of their 

respective quantile domains 
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Using differentiability of rate measured with a continuous test 
function for detection and quantification of arrhythmia 
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Space science instrumentation 
•  Onboard / in situ science capabilities 
•  No software / firmware requirements 
•  Flexible models for linking observables to quantities 

of interest 
•  Automated adaptive data acquisition 
•  Quantitative treatment of uncertainty present in data 
•  Effective organization of data for transmission and 

storage 
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Example I:  Integrated energy - pitch angle 
measurements 
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Direct analog measurement of energy - pitch 
angle density 
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Example II:  Directional particle flux 
measurements 

Suppression of omnidirectional flux by analog 
coincidence counting 
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Counting synchronous pulses (shown in red) 
from two detectors 


