Blind Adaptive Analog Nonlinear Filters for Noise Mitigation in Powerline Communication Systems

Alexei V Nikitin

Avatekh Inc, Lawrence, KS Kansas State University, Manhattan, KS

Dale Scutti Electrical & Computer Eng.

Kansas State University

Manhattan, KS

Balasubramaniam Natarajan

Electrical & Computer Eng. Kansas State University Manhattan, KS

Ruslan L Davidchack

Dept. of Mathematics University of Leicester Leicester, UK

March 30, 2015

- PLC receivers resistant to powerline noise
- Nonlinear vs. linear
- Analog vs. digital and "blind" vs. model-based

2 Nonlinear Differential Limiters

- Theoretical foundation
- 1st order Canonical Differential Limiter
- Higher order NDLs
- Adaptive NDLs

3 ANDLs in PLC systems

Motivation ●○○○ NDLs/ANDLs 000000 ANDLs in PLC systems

Motivation PLC receivers resistant to powerline noise

KANSAS STATE

UNIVERSITY

Replacing front-end analog filters in PLC receiver by ANDLs provides resistance to powerline noise

RED, BLUE, or GREEN - different noise compositions

University of

Leicester

Motivation NDLs/ANDLs

Nonlinear vs. linear

KANSAS STATE

vaTekh

- Technogenic (man-made) signals are typically distinguishable from purely random (e.g. thermal)
 - specifically, in terms of amplitude distributions/densities (non-Gaussian)
- At any given frequency, linear filters affect power of both noise and signal of interest proportionally, and cannot improve SNR in passband
- Nonlinear filters can reduce PSD of non-Gaussian interference in passband without significantly affecting signals of interest
 - increasing passband SNR and channel capacity

.eicester

- Linear filters are converted into Nonlinear Differential Limiters (NDLs) by introducing feedback-based nonlinearities into filter responses
 - NDLs/ANDLs are fully compatible with existing linear devices and systems
 - enhancements/low-cost alternatives for state-of-art interference mitigation methods

vaTekh

0000

Motivation Analog vs. digital and "blind" vs. model-based

- *Digital* filtering is performed after ADC, when bandwidth of signal+interference mixture is reduced and non-Gaussian nature of interference is obscured
 - effectiveness is reduced and memory and DSP burden is exacerbated
- Analog NDLs combine bandwidth reduction with mitigation of interference
 - can simply replace respective linear filters in the analog front end
 - provide means to increase effectiveness by modifying peakedness of interference
- Model-based approaches may be limited by parameter estimation schemes
 - e.g. sensitive to inaccuracies in obtaining derivatives
 - may not be robust under a model mismatch
- "Blind" approaches do not rely on underlying noise distribution assumptions

Motivation ○○○● NDLs/ANDLs

6/15

Motivation

Distributional differences between thermal noise and technogenic signals

Leicester

UNIVERSITY

NDLs/ANDLs ●○○○○○

Nonlinear Differential Limiters

KANSAS STATE

KvaTekh

Proc. R. Soc. Lond. A, 2003, 459(2033):1171-1192

•
$$\Phi(D,t) = w(t) * \mathcal{F}_{\Delta D}[D-x(t)]$$

- time-dependent amplitude distribution
- $\mathcal{F}_{\scriptscriptstyle \Delta D}(D)$ is discriminator function
- w(t) is time window

•
$$\Phi(D_q(t), t) = q, \quad 0 < q < 1$$

• level (contour) curve

$$\frac{\mathrm{d}D_q}{\mathrm{d}t} = -\frac{\partial\Phi(D_q,t)/\partial t}{\partial\Phi(D_q,t)/\partial D_q} + \nu \left[q - \Phi(D_q,t)\right], \qquad \nu > 0$$

• corresponds to a variety of nonlinear filters with desired characteristics

• depending on shape of $\mathcal{F}_{\scriptscriptstyle \Delta D}(D)$

University of

Leicester

e.g. for q=1/2 and ΔD→0 describes analog median filter in time window w(t)
 becomes linear filter when ΔD→∞

KvaTekh

NDLs/ANDLs

ANDLs in PLC systems

Nonlinear Differential Limiters

1st order Canonical Differential Limiter

$$\dot{\chi}(t) = \lim_{\alpha \to 0} \frac{\frac{1}{2} - \mathcal{F}_{2\alpha} \left[\chi(t) - x(t) \right]}{\int_{-\infty}^{t} \mathrm{d}s \, \exp \left(\frac{s-t}{\tau_0} \right) \, f_{2\alpha} \left[\chi(t) - x(s) \right]}$$

"true" analog median filter in exponential time window with time constant τ₀
 f_{2α}(x) = dF_{2α}(x)/dx, lim_{α→0} F_{2α}(x) = θ(x), and lim_{α→0} f_{2α}(x) = δ(x)

Leicester

•
$$\chi = x - \tau(|x - \chi|)\dot{\chi}$$
, where
 $\tau(|x - \chi|) = \tau_0 \times \begin{cases} 1 & \text{for } |x - \chi| \le \alpha \\ \frac{|x - \chi|}{\alpha} & \text{otherwise} \end{cases}$

- α is resolution parameter
- linear 1st order lowpass filter when $\alpha \to \infty$

Motivation	

XvaTekh

NDLs/ANDLs

ANDLs in PLC systems

Nonlinear Differential Limiters

1st order CDL: Implementation

KANSAS STATE

University of Leicester

Example of idealized OTA-based implementation topology for 1st order CDL

Motivation

NDLs/ANDLs

Nonlinear Differential Limiters

Linear-to-NDL conversion: Replace 1st/2nd order front-end lowpass stage with 1st/2nd order NDL

Example for PLC noise (14/15)

KvaTekh

NDLs/ANDLs ○○○○●○ ANDLs in PLC systems

Nonlinear Differential Limiters

Higher order NDLs: Nonlinear suppression of impulsive noise

"Disproportional" (nonlinear) suppression of impulsive noise by NDLs

Linear filter: Output noise is proportional to input noise

University of

Leicester

KANSAS STATE

NDL: Output is insensitive to impulsive noise

NDLs/ANDLs ○○○○○● ANDLs in PLC systems

Nonlinear Differential Limiters

KANSAS STATE

Leicester

KvaTekh

An ANDL contains a sub-circuit (characterized by a *gain* parameter) that monitors a chosen measure of the signal+noise mixture and provides a time-dependent resolution parameter $\alpha = \alpha(t)$ to the main NDL circuit

NDLs/ANDLs 000000

ANDLs in PLC systems

KANSAS STATE

XvaTekh

University of

Leicester

Qualitative illustration of powerline noise mitigation

Noise snapshots at 0 dB noise power

RED – "wide" (\sim 2.5 ms), BLUE – "mid-range" (\sim 500 μ s), and GREEN – "narrow" (\sim 100 μ s) cyclostationary noise bursts

▶ PLC receivers resistant to powerline noise (3/15)

NDLs/ANDLs

ANDLs in PLC systems

Example of signal traces

ANDLs in PLC systems

NDLs' ability to disproportionally reduce PSD of impulsive noise in signal passband provides opportunity for noise mitigation in PLC systems that deserves further investigation

NDLs/ANDLs:

vaTekh

- combine bandwidth reduction (e.g. when used as anti-aliasing filters) with mitigation of interference
- can be used as **enhancement** or **alternative** to other interference mitigation methods
- can be implemented in both analog and digital forms
- have appealing methodological advantages

Appendix I Digital NDLs/ANDLs

- NDLs/ANDLs are analog filters
 - combine bandwidth reduction with mitigation of interference
- Also allow for near-real-time finite-difference (digital) implementations
 - relatively simple computationally inexpensive low memory requirements
- Digital NDLs/ANDLs require high sampling rates
 - should use multi-rate processing

University of

Leicester

KANSAS STATE

XvaTekh

Appendix II: References to NDL-related work

		-
	-	

Nikitin AV, Davidchack RL, Smith JE Out-of-band and adjacent-channel interference reduction by analog nonlinear filters EURASIP J Adv. Signal Process., 2015, 2015:12

Nikitin AV, Davidchack RL, Sobering TJ

Adaptive analog nonlinear algorithms and circuits for improving signal quality in the presence of technogenic interference In *Proc. IEEE Military Communications Conference (MILCOM 2013)*, San Diego, CA, 18-20 November 2013

Nikitin AV

Method and apparatus for signal filtering and for improving properties of electronic devices US Patents 8,489,666 and 8,990,284 US Patent Application Publications 2013/0339418 and 2014/0195577

Nikitin AV, Epard M, Lancaster JB, Lutes RL, Shumaker EA Impulsive interference in communication channels and its mitigation by SPART and other nonlinear filters EURASIP J Adv. Signal Process., 2012, 2012:79

Nikitin AV

۲

On the interchannel interference in digital communication systems, its impulsive nature, and its mitigation EURASIP J Adv. Signal Process., 2011, 2011:137

Nikitin AV, Davidchack RL

Signal analysis through analog representation Proc. R. Soc. Lond. A, 2003, 459(2033):1171-1192

