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Abstract

Most of the current biometric techniques are based
on logic (digital) driven approaches, which are
often computationally expensive and can be found in
dissonance with the continuous nature of both the
biometric information itself and the human perception.
Biometric information is best represented by smoothly
varying quantities, with continuous range of differences
within each quantity. Thus evaluation of these
differences is more suitable for analysis by methods of
differential calculus rather than by digital and logical
means. Previous research demonstrates that modeling
of the human perception should be ultimately based on
continuous (analog) approaches, or, at the very least,
on approaches derived from multivalued (as opposed to
binary) logic.

Even though a practical outcome of biometric
analysis is often of a “decision making” type, such
reduction of large sets of continuous multivariate data
to a single parameter characterizing the “degree of
similarity” among these sets, often up to a binary
(“yes” – “no”) decision, can be simply done by
constructing an appropriate statistic.

In this paper, we introduce a novel approach to
the analysis and modeling of human image biometrics
through analog representation. To illustrate the
flexibility and robustness of this approach, we use an
example of the so-called line objects, representing such
behavioral human characteristics as handwritten text or
signatures.

∗Corresponding author. Also with Dept. of Physics &
Astronomy, U. of Kansas, Lawrence, KS 66045, USA.

†Also with Neotropy LLC, Lawrence, KS.

1 Introduction

The purpose of this paper is to discuss the
applicability of analog and combined analog-digital
techniques to model image biometrics of an individual.
Common image biometrics include (i) physical
characteristics such as fingerprints and (ii) behavioral
characteristics such as handwritten text, sketches, and
signatures. This paper advocates integration of analog
and digital approaches to processing and modeling
image biometrics through analog representation,
emphasizing the fact that the measured characteristics
have continuous nature. Known modeling systems
discard analog information or digitize it in a form
suitable for computer storage. This explains many
obvious limitations of current systems such as the
lack of a unified approach for image transformation
operations (partially due to the intrinsic anisotropy of
a discrete grid), strong dependence on the resolution
of image acquisition systems, and the inability of
authentication software to make use of the originally
continuous nature of the signals.

In particular, the paper intends to initiate the
development of software and hardware modeling tools
utilizing the concept of integrated analog and digital
techniques. These modeling tools would allow us to
take into account the parameters of image producing
and acquiring instruments (see Fig. 1), and can be
deployed for image recognition, authentication, and
identification in security applications. For specificity,
the rest of the paper deals with such particular
behavioral objects as handwritten text and signatures.
However, the methods and techniques presented
below can be used to model other image biometrics
(fingerprints, facial characteristics, etc.).

1



 
 

 

Image 
producing 

devices

Storage
medium

Image 
acquisition 

devices

Hardware/
software
modeling

tools

Image 
producing/ 

acquisition 
devices 

 

analog analog digital 

analog/digital 

digital/analog 

Current  systems/ Suggested improvements 

 

Figure 1. The sketch of an image biometric system and the place of our work

Many types of images in image biometrics can
be classified as line objects stored on paper or in
electronic medium. Line objects carry geometric as
well as kinematic, dynamic, and other information.
For example, the line shape or contour as well as
its thickness represent geometric information, while
characteristics such as speed of writing or exerted
pressure along the drawn line represent kinematic
and dynamic information, respectively. The line’s
color and other parameters along the contour provide
additional characterization of a line object. Note
that all these characteristics are continuously varying
(analog) quantities, while their digital representation
is given by discrete sets of data.

During the past decade, a new generation of devices,
the so-called ad hoc scanners, has been developed to
combine image producing and image acquiring stages,
and to allow recording of kinematic and dynamic
information [see 3, for example], which is as important
for image characterization as the geometric shape.
Even though the outputs of these devices are typically
digital records, a continuous representation of a curve
can be (re-)created by appropriate software tools.
Also, since our approach has its basis in analog
methodology, the algorithms for the analysis can be
implemented in analog hardware. This is especially
appealing for security applications, since direct analog
hardware implementation eliminates most of the data
transmission paths and thus reduces the possibility of
tampering with the data.

The key feature of the proposed approach is the
representation of a line object in terms of a modulated
linear density Φ = Φ(η), where η = (η1, . . . , ηn) is
some parameter along the line object, and Φ is a non-
negative (unipolar) function satisfying the following
normalization condition:

∫

G

dη Φ(η) = 1 , (1)

where dη is the volume element, and the integration

goes over the region G containing all values
of η. This density is an n-dimensional continuous
scalar field , and thus can be treated as such by
well established techniques of differential calculus.
These techniques include integration/differentiation
(including partial differentiation), various changes in
coordinates (resizing, rotation, nonlinear coordinate
transformations), etc. In addition, by defining the
modulated linear density as a unipolar normalized
quantity, we make its mathematical properties
correspond to those of (probability) density functions,
and thus enable the usage of various “statistical”
characteristics for description of the line objects. In
addition, the modulation of the line density can
be viewed as a (fictitious) linear mass density, and
therefore one can employ mechanical analogies (such
as gyroradius and moments of inertia) for description
and comparison of the line objects. In this paper,
we focus on description of line objects through two-
dimensional modulated densities, while the detailed
description of the former in terms of one-dimensional
densities is presented elsewhere [7].

The rest of the paper is organized as follows. In
Section 2, we describe a simplified model of a line
object, provide examples of such object’s creation, and
introduce the necessary definitions and terminology.
Section 3 introduces the modulated linear density
and describes its basic properties. Some elementary
operations on line objects of image biometrics are
discussed in Section 4. Section 5 provides an example
of comparison of different line objects. Section 6
concludes the paper and outlines the directions of our
future work.

2 Dynamic model of a line object

Let us adopt the following simplified scenario of
creating a line object in an act of writing (for example,
signing a document). The tip of a writing utensil
follows the trajectory described by the radius (position)
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vector r(t), where t is physical time or any other
ordering parameter. Changes in the exerted pressure
and stroke dynamics will generally result in a different
“texture,” or composition, of the line along this
trajectory. For example, the line can have varying
thickness, width, and color intensity. This composition
can be described by the modulating parameter µ(t),
which we consider, without loss of generality, to be
a unipolar scalar.1 In order to enable mechanical
analogies, it is sometimes convenient to interpret such
modulation as the linear (pseudo-) mass density of the
trajectory.

We will assume that the components of the position
vector are continuous functions of time, and thus the
speed v(t) = |ṙ(t)| is always finite. (The dot over r
denotes time derivative.) Obviously, this notion simply
reflects the physical reality of human handwriting.

If the tip of the writing utensil is infinitesimally
small, it will sweep out no area, and thus the result
of writing is an ideal line object. In reality, the tip
will always have a finite size, and thus a “real-life”
line object is a band of a finite width rather than
an infinitesimally narrow line. With a simplification
that the size and shape of the tip do not significantly
change during the process, however, such a “band”
object can be still described as a line, since it will
be fully characterized by the trajectory of a point
(e.g., the center) of the utensil’s tip, and by some
external modulation along the trajectory. For example,
if the tip is not radially symmetric and its orientation
changes during writing, the resulting change in the
line’s texture can be described as a simple scalar
modulation. In this case, the modulation µ(t) will be
the angle of rotation of the tip. However, to maintain
clarity of our presentation, we will assume that the tip
profile is radially symmetric and can be described by a
radial function fd(r) > 0,

2π

∫ ∞

0

dr rfd(r) = 1 , (2)

where the subscript “d” denotes the characteristic
diameter of the tip.

Note that even though this description implies a
dynamic model, a static image can be described in
a similar manner. Furthermore, as we discuss later
in more detail, the discrete data can be handled in
finite differences while preserving the essentially analog
philosophy of our approach. We will now proceed with
the mathematical description of the modulated linear
density.

1Vector modulation can be dealt with on a component-by-
component basis.

3 Two-dimensional modulated linear
density

3.1 Ideal counting (threshold crossing) density

Let us first develop a formula for an ideal density of
a line object on a plane. Consider the task of counting
the number of crossings of a point (threshold) R by a
line described by r(t), during the time interval [0, T ].
This number N can be formally expressed as

N =
∑

i

∫ T

0

dt δ(t− ti) , (3)

where δ(t) is the Dirac δ-function, and the summation
goes over all i such that r(ti) = R. On the other hand,
the same number can be calculated as an integral over
an infinitesimally small circle centered at R, namely
as

N =
∫ T

0

2πξ(t) |dξ(t)| δ [ξ(t)] =
∫ T

0

dt |ξ̇(t)| 2δ [ξ(t)] ,

(4)
where ξ(t) = R − r(t), and we have used the relation
δ(ξ) = δ(ξ)/(πξ) [see 2, for example]. Thus Eq. (3) can
be re-written as

N =
∫ T

0

dt |ṙ(t)| 2δ (|R− r(t)|) , (5)

where we have used the fact that ε̇(t) = |ε̇(t)| = |ṙ(t)|.
Integration of Eq. (5) over all possible thresholds R
leads to

L =
∫ T

0

dt |ṙ(t)| , (6)

which is just the total length of the trajectory. Then
the ratio

Φ(R) =
1
L

∫ T

0

dt |ṙ(t)| 2δ (|R− r(t)|) (7)

expresses the fraction of the curve’s length at the
point R to the total length of the curve,2 and thus
represents the uniform linear density of the curve.
Notice that Eq. (7) describes a uniform linear density
of an ideal writing utensil, the one with infinitesimally
sharp tip. Next we extend this description to a
realistic instrument, and address additional dynamic
characteristics through introduction of the so-called
modulation.

2“Length at a point” means the length within an
infinitesimally small vicinity of the point.
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3.2 Density of a line drawn by a realistic
instrument

The modulated linear density function Φ(R) of a line
drawn by a writing utensil with the tip profile fd can
be represented as (see, for example, [5; 4; 6])

Φ(R) =
1
M

∫ T

0

dt µ(t) |ṙ(t)| fd (|R− r(t)|) , (8)

where µ(t) is the modulating parameter along the line
of uniform density, |ṙ(t)| is the speed of the movement
of the tip, T is the duration of writing, and

M =
∫ T

0

dt µ(t) |ṙ(t)| (9)

is the total “pseudomass” of the trajectory. Obviously,
when µ(t) = const, Eq. (8) describes a uniform linear
density. When µ(t) = 1, M is just the total length
of the trajectory (see Eq. (6)). The modulating
parameter µ(t) can be the applied pressure, the “mass
density” (e.g., thickness or brightness of the line), etc.
It should be easy to see that the density function given
by Eq. (8) is properly normalized according to Eq. (1).

Example Imagine that a pen has a uniform circular
tip of a diameter d. Then the tip’s radial profile is
described by the function

fd(r) =
4

πd2
θ(d− 2r) , (10)

where θ(x) is the Heaviside unit step function. If the
tip follows a trajectory described by the position vector
r(t), and the ink flows with the constant rate λ(t), then
the density of the ink left on the paper during the time
interval [0, T ] can be described by the function

Φ(R) =
4

πd2Λ

∫ T

0

dt λ(t) θ (d− 2|R− r(t)|) , (11)

where Λ =
∫ T

0
dt λ(t) is the total amount of the

used ink, and the width parameter d has an obvious
interpretation of the width of a drawn (straight) line.
Notice that in this example the modulation is expressed
as µ(t) = λ(t)/|ṙ(t)|, and thus the thickness of the
line (the amount of ink per unit length) is inversely
proportional to the speed of movement of the pen.

In many instances manipulations with a line object
are based on the trajectory only, and thus assume a
uniform linear density, µ(t) = const in Eq. (8). One of
the exceptions is, for example, a dynamic recording of a
signature, when the pressure exerted by the pen along
the trajectory is also recorded. This non-uniformity in
the pressure along the line is an important distinction
of such a line object, and needs to be treated as a
modulated density with non-constant µ(t).

4 Transformation and comparison of
line objects

4.1 Center of mass, gyroradius, and inertia tensor

The comparison of biometric objects should
normally be invariant to such transformations of
coordinates as translation, rotation, and simple
uniform scaling. A straightforward way to insure such
invariance is to consider a line object as a (flat) rigid
body with the mass distribution described by Φ(R),
and use the coordinate system aligned with this body’s
principal axes, with the unit vector length equal to
the gyroradius. See, for example, [8] or [1] for the
discussion of rigid bodies and their moments of inertia.

Center of mass The center of mass Rc is defined as

Rc =
∫ ∞

−∞
d2r rΦ(r) , (12)

where we have used the shortcut notation
∫ ∞

−∞
d2r . . . =

∫ ∞

−∞
dx

∫ ∞

−∞
dy . . . . (13)

Gyroradius The gyroradius Rg is defined as

R2
g =

∫ ∞

−∞
d2r r2 Φ(r) . (14)

Inertia tensor The components of the inertia
tensor I are defined as

Ixx =
∫ ∞

−∞
d2r x2 Φ(r) , (15)

Ixy = Iyx = −
∫ ∞

−∞
d2r xy Φ(r) , (16)

and

Iyy =
∫ ∞

−∞
d2r y2 Φ(r). (17)

Alignment of line objects Now the alignment of
line objects (that is, of their respective densities) can
be done by transforming the coordinates as follows:
(1) translation by −Rc, (2) scaling (division) by Rg,
and (3) rotation which diagonalizes the inertia tensor.
Obviously, steps (2) and (3) can be interchanged [see
8; 1, for example].
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4.2 Comparison: compromise between
robustness and selectivity

The main purpose of representing a line in terms
of its modulated density is to enable construction of
various statistics for comparison of different objects,
and to allow probabilistic interpretation of such
comparison. Even though the density function Φ(R)
by itself is highly sensitive to changes in the pen’s
trajectory (especially when line width d is small),
the robustness of comparison can be greatly increased
by employing an “insensitive” external instrument as
explained below.

Assume that we measure the density function of
Eq. (8) by an instrument with a smooth (linear)
spatial impulse response F%(R), where the width
parameter % is indicative of the (spatial) resolution
of the instrument. Then the measured density
function Ψ(R) can be expressed as

Ψ(R) = F%(R) ∗ Φ(R) , (18)

where the asterisk denotes convolution, and this
measured density will be insensitive to small
fluctuations δr(t) in the trajectory.

Now a statistic for comparison of two line objects
with the measured densities Ψ1 and Ψ2 can be
constructed in various ways. For example, one can
use the following formula for estimating the “degree
of similarity”:

1 ≥ Q = 1− 1
2

∫ ∞

−∞
d2r |Ψ1(r)−Ψ2(r)| ≥ 0 , (19)

with Q = 1 being a perfect match, and Q = 0 being a
complete difference.

Let us now consider a numerical example of applying
the material of Sections 3 and 4.

5 Illustrative numerical experiment

5.1 Computation in finite differences

In numerical computations, “analog” is synonymous
to “high resolution.” Thus, given a relatively short
parametric record of a line {r(ti), µ(ti)} (typically of
order 103 points), we first need to convert this record
into a high resolution image which can be numerically
treated as a continuous object. This can be done
through a convolution with a kernel fd (representing
the writing utensil and/or the reading instrument) such
that its characteristic width is large in comparison with
the cell of the spatial grid Rij . Then a finite difference
equivalent of Eq. (8) can be written as

Φ(Rij) =
∑N

k=1 µk |rk+1 − rk−1| fd (|Rij − rk|)∑N
k=1 µk |rk+1 − rk−1|

,

(20)
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Figure 2. Original modulated linear densities
of triangles with calculated principal axes and
gyroradii

where µk = µ(tk) and rk = r(tk). Here we assume that
tk = (k− 1)T/(N − 1) for 1 ≤ k ≤ N , and t0 = t1 = 0,
tN+1 = tN = T .

5.2 Original images and their modulated linear
densities

As a simplified illustration, we have chosen images
of triangular shape, as shown in Fig. 2. In Panels 1a
through 1c a triangle is drawn by a point moving (in
a clockwise direction) with a velocity v(t) (v(t) =
const), and in Panels 2a through 2c the velocity is
rotated by some (constant) angle, multiplied by a
random factor close to unity, and has an added small
random component δv(t). In Panels 1a and 2a the
modulation µ(t) linearly decreases, in Panels 1b and 2b
it remains constant, and in Panels 1c and 2c it linearly
increases. The modulated densities of the lines are
computed according to Eq. (20), with the kernel fd

of the width equal to the width of the lines in Fig. 2.
In the respective panels of the figure, we also show the
principal axes of inertia and draw the circles (shown
by the dashed lines) of gyroradii Rg, centered at the
centers of mass Rc.

5.3 Transformations

Fig. 3 shows the images after the transformation
consisting of the (1) additional convolution with the
“reading” kernel F%, (2) translation moving the centers
of mass of the resulting densities to the origin of the
coordinate system, (3) rotation aligning their principal
axes of inertia with the axes of coordinates, and
(4) scaling (division by Rg) normalizing their gyroradii
to unity. (See Section 4.)
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Figure 3. Modulated linear densities of
triangles after translation, rotation, and
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Figure 4. Comparison of densities using
statistic of Eq. (19)

5.4 Comparison

Fig. 4 displays the tabulated result of comparison
of the transformed densities using the statistic Q of
Eq. (19). The values of Q corresponding to the
specific pairs of images are indicated in grayscale at
the intersections of the respective rows and columns of
the table. In this example, the size % of the “reading”
kernel F% is of the same order as the width d of the
writing utensil and is indicated in the upper left corner
of the table. Fig. 5 illustrates the effect of the kernel’s
size on the robustness and selectivity of comparison.

6 Conclusion

The key component of the analog approach to
the analysis of line objects presented here is the
introduction of modulated linear density , which is

a continuous function of a two-dimensional spatial
coordinate. The continuity of this function allows
its treatment by the operations of differential calculus
and provides a means for the following fruitful
reformulations of numerous analytical tasks.

Restoration of continuity Even though the basic
model of the object acquisition adopted in this paper
assumes a continuous parametric description of the
line, a digital record can also be transformed into
a continuous linear density by a convolution with
a continuous kernel. Such a convolution can be
performed in time as well as in the spatial domain,
depending on the domain of the digitization (time
and/or spatial sampling). Changing the size of
the kernel is effectively equivalent to adjusting the
precision of the acquisition instrument, and allows us
to achieve any desired compromise between robustness
and selectivity in the quantification and/or comparison
algorithms.

Probabilistic interpretation Although any line
object, deterministic as well as stochastic, can be
transformed into a modulated linear density, the
formal similarity of the latter with a probability
density function allows us to explore probabilistic
analogies and interpretations and construct a variety
of “statistical” estimators of the object’s properties,
like those based on rank tests or linear combinations
of order statistics (see a model statistic of Section 4.).
This enables us to quantify similarity between a pair
of line objects in a flexible way, allowing a meaningful
adaptation to particular problems [see 5; 4]. For
example, the quantile function

Q(x;a, t) =
∫ ∞

−∞
dnr ϕ(r;a, t) θ [ϕ(x;a, t)− ϕ(r;a, t)]

(21)
can be given the following probabilistic interpretation:
If r is a random variable with density function ϕ(r;a, t),
where a and t are the spatial and temporal coordinates,
respectively, then, for a given x, Q(x;a, t) is the
probability that ϕ(x;a, t) exceeds ϕ(r;a, t). This
function can be a highly efficient tool in pattern
recognition.

Coordinate transformation One of the main
advantages of the proposed approach is that a change in
a continuous density function under various nonlinear
coordinate transformations can easily be calculated.
This opens up, among other possible applications,
the opportunity to construct such statistics for
comparison of objects which are invariant to certain
transformations. This is a very appealing feature in
biometric analysis, since image biometric data hardly
ever follow well determined geometric forms.

6



1a2a2b2


F%(~R)F%(R) � �1(R) (1a)F%(R) � �2(R) (2a)F%(R) � �2(R) (2b)F%(R) � �2(R) (2
)
1a & 2a
1a & 2b1a & 2
 log(%)

Q

Figure 5. Compromise between robustness and selectivity
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