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Abstract

Rank-based nonlinear %ltering techniques are steadily gaining in popularity due to their robustness. However, the analog
implementation of these techniques meets with considerable conceptual and practical di2culties. Here we describe an
adaptive approximation for a rank %lter of a continuous signal expressed in terms of a system of di3erential equations easily
implementable in an analog circuit. The design is based on consideration of the %nite precision of physical measurements,
which leads to simple and e2cient implementation of many traditionally digital analysis tools. We also illustrate the
performance of the adaptive approximation %lter in comparison with the respective ‘exact’ rank %lter in a boxcar moving
window.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The main advantage of analog signal processing with respect to digital processing is simple implementation
and e2cient handling of nonlinearities. However, there are many signal processing tasks for which digital
algorithms are well known, but corresponding analog operations are hard to reproduce. One example which
falls within this category is related to the use of signal processing techniques based on order statistics, 1

such as implementing median and other order statistic %ltering [16]. Order statistic %lters are gaining wider
recognition for their ability to provide more robust estimators of signal properties. For example, the median
value of a set of measurements usually represents the general trend in a signal better than the mean value,
since the latter is more sensitive to outliers. However, while analog implementation of the mean is trivial,
median estimators are much harder to implement in analog form [5–7], since, traditionally, their determination
involves the operation of sorting or ordering a set of measurements. Indeed, there is no conceptual di2culty
in sorting a set of discrete measurements, but it is much less obvious how to perform similar operations for
continuous signals [3,4].
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1 See, for example, [1,15] for the de%nitions and theory of order statistics.
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As pointed out by some authors [14], the major problem in analog rank processing is the lack of an
appropriate di3erential equation for ‘analog sorting’. There have been many attempts to implement such
sorting and build continuous-time rank %lters. Examples of these e3orts include optical rank %lters [12], analog
sorting networks [13,14], and analog rank selectors based on minimization of a nonlinear objective function
[17]. However, the term ‘analog’ is often perceived as only ‘continuous-time’, and these e3orts fall short of
considering the threshold continuity, which is necessary for a truly analog representation of di3erential sorting
operators. Even though the recent work by Ferreira [4] extensively discusses threshold distributions, these
distributions are only piecewise-continuous and thus do not allow straightforward introduction of di3erential
operations with respect to threshold.
Recently, we have proposed a new approach to constructing analog devices for performing traditionally

digital signal processing tasks [9–11]. This approach is based on the consideration of the %nite precision of
real measurements, with the resulting modi%cation of the de%nitions of various signal properties and underlying
mathematical equations. Since analog systems are implemented using physical components, the mathematical
description of such systems must take into account their limited precision and inertial characteristics. Therefore,
the output of an analog device typically represents a weighted average over a nonzero time and threshold
intervals. Realization of this fact enables us to rewrite many problems of signal analysis in the form readily
addressed by methods of di3erential calculus, which are suitable for analog implementation, rather than by
the algebraic or logic operations of the digital approach. In [9], we have outlined the general principles of
this approach and suggested several applications. In the present article we apply these principles to develop a
simple and accurate approximation for a rank %lter of a continuous signal in a boxcar moving window.

2. Continuous discriminators and probes

Consider a simple measurement process whereby a signal x(t) is compared to a threshold value D. The
ideal measuring device would return ‘0’ or ‘1’ depending on whether x(t) is larger or smaller than D. The
output of such a device is represented by the Heaviside unit step function �[D− x(t)], which is discontinuous
at zero. However, the %nite precision of real measurements inevitably introduces uncertainty in the output
whenever x(t) ≈ D. To describe this property of a real measuring device, we represent its output by a
continuous function FHD[D− x(t)], where the width parameter HD characterizes the threshold interval over
which the function changes from ‘0’ to ‘1’ and, therefore, reIects the measurement precision level. We
call FHD(D) the threshold step response of a continuous discriminator. Because of the continuity of this
function, its derivative fHD(D) = dFHD=dD exists everywhere, and we call it the discriminator’s threshold
impulse response, or a probe [9,11]. This threshold continuity of the output of a discriminator is the key to a
truly analog representation of such a measurement. Examples of step and impulse responses of a continuous
discriminator are shown in Fig. 1. We further assume, for simplicity, that the probe is a unimodal even
function, that is, fHD(D) has only a single maximum and fHD(D) = fHD(−D).

In practice, many di3erent circuits can serve as discriminators, since any continuous monotonic function
with constant unequal horizontal asymptotes will produce the desired response under appropriate scaling and
reIection. It may be simpler to implement a discriminator described by an odd function F̃HD which relates
to the response FHD as

F̃HD = A(2FHD − 1); (1)

where A is an arbitrary (nonzero) constant. For example, the voltage–current characteristic of a subthreshold
transconductance ampli%er [8,17] can be described by the hyperbolic tangent function, F̃HD=A tanh(D=HD),
and thus such an ampli%er can serve as a continuous discriminator. For speci%city, this response function is
used in the numerical example of this article. A practical implementation of the respective probe fHD of the
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Fig. 1. Representative step (a) and impulse (b) responses
of a continuous discriminator.

Fig. 2. De%ning output Dq(t) of a rank %lter as a level curve
of the distribution function 
(D; t).

discriminator FHD can be conveniently accomplished as a %nite di3erence

fHD(D) ≈ �F̃HD(D)
4A�D

=
1

4A�D
[F̃HD(D + �D)− F̃HD(D − �D)]; (2)

where �D is a relatively small fraction of HD.

3. Analog rank �lters

Consider the measuring process in which the di3erence between the threshold variable D and the scalar
signal x(t) is passed through a discriminator FHD, followed by a linear time averaging %lter with a continuous
impulse response w(t). The output of this system can be written as


(D; t) = w(t) ∗FHD[D − x(t)]; (3)

where the asterisk denotes convolution. The physical interpretation of the function 
(D; t) is the (time depen-
dent) cumulative distribution function of the signal x(t) in the moving time window w(t) [9]. In the limit of
high resolution (small HD), Eq. (3) describes the ‘ideal’ distribution [4]. Notice that 
(D; t) is viewed as a
function of two variables, threshold D and time t, and is continuous in both variables.
The output of a quantile %lter of order q in the moving time window w(t) is then given by the function

Dq(t) de%ned implicitly as


[Dq(t); t] = q; 0¡q¡ 1: (4)

Viewing the function 
(D; t) as a surface in the three-dimensional space (t; D; 
), we immediately have
a geometric interpretation of Dq(t) as that of a level (or contour) curve obtained from the intersection of
the surface 
 = 
(D; t) with the plane 
 = q, as shown in Fig. 2. Based on this geometric interpretation,
one can develop various explicit as well as feedback representations for analog rank %lters, including such
generalizations as L %lters and �-trimmed mean %lters [9]. We will further focus on a particular feedback
representation of the basic rank %lter for signal amplitudes.

4. Rank �lter in RC window

When the time averaging %lter in Eq. (3) is an RC integrator (RC=�), a di3erential equation for the output
Dq(t) of a rank %lter takes an especially simple form and can be written as

dDq
dt

=
A(2q− 1)− F̃HD[Dq(t)− x(t)]
2A�h�(s) ∗ fHD[Dq(t)− x(s)]|s=t ; (5)
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where h�(t) = �(t) exp(−t=� − ln �). 2 The solution of this equation is ensured to rapidly converge to Dq(t)
of the chosen quantile order q regardless of the initial condition [9]. Note also that the continuity of the
discriminator is essential for the right-hand side of Eq. (5) to be well behaved.
The main obstacle to a straightforward analog implementation of the %lter given by Eq. (5) is that the

convolution integral in the denominator of the right-hand side needs to be re-evaluated (updated) for each
new value of Dq. If we wish to implement an analog rank %lter in a simple feedback circuit, then we should
replace the right-hand side of Eq. (5) by an approximation which can be easily evaluated by such a circuit.
Of course, one can employ a great variety of such approximations [2, for example], whose suitability will
depend on a particular goal. A very simple approximation becomes available in the limit of su2ciently small
�, since then we can replace h�(s) ∗ fHD[Dq(t) − x(s)]|s=t by h�(t) ∗ fHD[Dq(t) − x(t)] in Eq. (5). As was
shown in [9], this simple approximation can still be used for an arbitrary time window w(t), if we represent
w(t) as a weighted sum of many RC integrators with small �. We now provide an example of using this
technique for approximating an output of a rank %lter in a moving boxcar time window.

5. Adaptive approximation of a feedback rank �lter in a boxcar time window

A rank %lter in a boxcar moving time window BT (t) = [�(t)− �(t − T )]=T is of a particular interest, since
it is the most commonly used window in digital rank %lters. The output Dq of an analog rank %lter in this
window is implicitly de%ned as BT (t) ∗ FHD[Dq − x(t)] = q. To construct an approximation for this %lter
suitable for implementation in an analog feedback circuit, we %rst approximate the boxcar window BT (t) by
the following moving window wN (t): 3

wN (t) =
1
N

N−1∑
k=0

h�(t − 2k�); (6)

where �= T=(2N ). The %rst moments of the weighting functions wN (t) and BT (t) are identical, and the ratio
of their respective second moments is

√
1 + 2=N 2 ≈ 1+1=N 2. The other moments of the time window wN (t)

also converge rapidly, as N increases, to the respective moments of BT (t), which justi%es the approximation
of Eq. (6).
Now, the output of a rank %lter in such a window can be approximated as discussed at the end of Section

4, namely as [9] 4

dDq
dt

≈ AN (2q− 1)−∑N−1
k=0 F̃HD[Dq(t)− x(t − 2k�)]

2A�h�(t) ∗
∑N−1

k=0 fHD[Dq(t)− x(t − 2k�)]
; (7)

where � = T=(2N ). Note that the accuracy of this approximation is contingent on the requirement that
HD¿ |h�(t) ∗ ẋ(t)|�. This means that, if we wish to have a simple analog circuit and keep N relatively
small, we must choose HD su2ciently large for the approximation to remain accurate. On the other hand,
we would like to maintain high resolution of the acquisition system, that is, to keep HD small.

2 In more explicit notation, the convolution integral in the denominator of Eq. (5) can be written as

h�(s) ∗ fHD[Dq(t)− x(s)]|s=t = 1
�

∫ t

−∞
ds exp

(
s− t
�

)
fHD[Dq(t)− x(s)]:

3 Since a moving time window is always a part of a convolution integral, the approximation is understood in the sense that BT (t)∗g(t) ≈
wN (t) ∗ g(t), where g(t) is a smooth function

4 An explicit expression for the convolution integral h�(t) ∗ fHD[Dq(t)− x(t − 2k�)] is

h�(t) ∗ fHD[Dq(t)− x(t − 2k�)] =
1
�

∫ t

−∞
ds exp

(
s− t
�

)
fHD[Dq(s)− x(s− 2k�)]:
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In order to reconcile these conIicting requirements, we propose to use an adaptive approximation, which
reduces the resolution only when necessary. This can be achieved, for example, by using Eq. (2) and rewriting
the threshold derivative of h�(t) ∗ F̃HD[Dq − x(t)] as

h�(t) ∗ fHD[Dq − x(t)] ≈ h�(t) ∗ {F̃HD[Dq+ − x(t)]− F̃HD[Dq− − x(t)]}
4A(Dq+ − Dq−) ; (8)

where Dq± is the output of a rank %lter of the quantile order q± �q, �q�q. In essence, the approximation of
Eq. (8) amounts to decreasing the resolution of the acquisition system only when the amplitude distribution
of the signal broadens, while otherwise retaining high resolution.
Combining Eqs. (6)–(8), we arrive at the following representation of an adaptive approximation to a

feedback rank %lter in a boxcar time window of width T :

Ḋq(t) =
AN (2q− 1)−∑N−1

k=0 F̃HD[Dq(t)− x(t − 2k�)]

h�(t) ∗ �F̃HD(t)

�Dq(t)
�

;

Ḋq+(t) =
AN (2q− 1 + 2�q)−∑N−1

k=0 F̃HD[Dq+(t)− x(t − 2k�)]

h�(t) ∗ �F̃HD(t)

�Dq(t)
�

;

Ḋq−(t) =
AN (2q− 1− 2�q)−∑N−1

k=0 F̃HD[Dq−(t)− x(t − 2k�)]

h�(t) ∗ �F̃HD(t)

�Dq(t)
�

; (9)

where �Dq(t) = Dq+(t)− Dq−(t) and

�F̃HD(t) =
N−1∑
k=0

{F̃HD[Dq+(t)− x(t − 2k�)]− F̃HD[Dq−(t)− x(t − 2k�)]}: (10)

This approximation preserves its validity for high-resolution discriminators (small HD), and its output con-
verges, as N increases, to the output of the ‘exact’ rank %lter in the boxcar time window BT (t). The accuracy
of this approximation is best described in terms of the error in the quantile q. That is, the output Dq(t) can
be viewed as bounded by the outputs of the ‘exact’ rank %lter for di3erent quantiles q±Hq. When HD and
�q in Eq. (9) are small, the error range Hq is of order 1=N:
Fig. 3 compares the performance of the analog rank %lter given by Eq. (9) to that of the ‘exact’ quantile

%lter in a boxcar moving window of width T . In this example, the quantile interval �q is chosen as �q=10−2

(1%). The continuous input signal x(t) (shown by the solid dark gray line) is emulated as high resolution
time series (2× 103 points per interval T ). The ‘exact’ outputs of a boxcar window rank %lter are shown by
the dashed lines, and their deviations within the ±Hq intervals are shown by the gray bands. The respective
outputs of the approximation given by Eq. (9) are shown by the solid black lines. The width parameter HD
of the discriminators, the width T of the boxcar time window, the quantile order q, and the number N of
exponential kernels in the approximation are indicated in the %gure.
The (instantaneous) accuracy of the approximation given by Eq. (9) decreases when the input signal x(t)

undergoes a large (in terms of the resolution parameter HD) monotonic change over a time interval of order
�. The main e3ect of such a ‘sudden jump’ in the input signal is to delay the output Dq(t) relative to the
output of the respective ‘exact’ %lter. This delay is shown as Ht in the lower left portion of the upper panel,
where the input signal is a square pulse. This timing error Ht is inversely proportional to the number N of
the kernels in the approximation. The accuracy of the approximation can also be described in terms of the
amplitude error. As can be seen in Fig. 3, the residual oscillations of the outputs of the analog %lter occur
within the q± 1=(2N ) interval around the respective outputs of the ‘exact’ %lter (that is, within the width of
the gray bands in the %gure).
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Fig. 3. Illustration of the performance of the analog rank %lter given by Eq. (9) by comparing its quartile outputs (q= 1
4 ;

1
2 , and

3
4 , solid

black lines) with the respective outputs of the ‘exact’ order statistic %lter in a rectangular moving window BT of width T (dashed lines).

6. Conclusion

This article describes an adaptive approximation of a real-time rank %lter, suitable for implementation in
an analog feedback circuit. Both the input and output of this %lter are continuous signals. The width of the
moving window and the quantile order are continuous parameters as well, and such continuity can be utilized
in various analog control systems. The adaptivity of the approximation allows us to maintain a high resolution
of the discriminators regardless of the properties of the input signal, which enables the usage of this %lter for
nonstationary signals.
Finally, let us point out that the equation describing this %lter is also suitable for numerical computations,

especially when the number of data points within the moving window is large. A simple forward Euler method
is fully adequate for integrating this equation, and the numerical convolution with an RC impulse response
function requires remembering only one previous value. Thus a numerical algorithm based on this equation
has the advantages of both high speed and low memory requirements.
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