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We present an approach to the analysis of signals based on analog representation
of measurements. Methodologically, it relies on the consideration and full use of the
continuous nature of a realistic, as opposed to an idealized, measuring process. Math-
ematically, it is based on the transformation of discrete or continuous signals into
normalized continuous scalar  elds with the mathematical properties of distribution
functions. This approach allows a simple and e¯ cient implementation of many tradi-
tionally digital analysis tools, including nonlinear  ltering techniques based on order
statistics. It also enables the introduction of a large variety of new characteristics of
both one- and multi-dimensional signals, which have no digital counterparts.

Keywords: analog signal processing; nonlinear ¯lters; threshold densities;
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1. Introduction

Our world is full of signals, both natural and man made. Since these signals are
normally measured as continuously varying quantities, it is not surprising that, in
the early days of signal analysis, most devices for processing signals were made with
analog, or continuous-action, components. Such devices use basic physical principles
and properties of the materials from which they are built, in order to accomplish
various signal-processing tasks.

Rapid development of digital technology since the 1950s has changed this situation
dramatically. The proliferation of digital methods has become so great that analog
devices have fallen out of fashion. Nevertheless, while the conversion to digital tech-
nology is undoubtedly justi ed by the ®exibility, universality and low cost of modern
integrated circuits, it usually comes at the price of high complexity of both hardware
and software implementations. In addition, all digital operations require external
power input, while many operations in analog devices can be performed by passive
components. Thus, analog devices consume much less energy and are therefore more
suitable to operate in autonomous conditions, such as mobile communications, space
missions, prosthetic devices, etc. The added complexity of digital devices stems from
the fact that all operations must be reduced to the elemental manipulation of binary
quantities using primitive logic gates. Therefore, even such basic operations as inte-
gration and di¬erentiation of functions require a very large number of such gates
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and/or sequential processing of discrete numbers representing the function sampled
at many points. On the other hand, the same operations can be performed instantly
in an analog device by passing the signal representing the function through a simple
RC circuit.

Of course, there are many signal-processing tasks for which digital algorithms are
well known, but corresponding analog operations are hard to reproduce. One exam-
ple, which is widely recognized to fall within this category, is related to the use of
signal-processing techniques based on order statisticsy, e.g. implementing median
and other order-statistic  ltering (Tukey 1977). Order-statistic  lters are gaining
wider recognition for their ability to provide more robust estimators of signal prop-
erties. For example, the median value of a set of measurements usually represents
the general trend in a signal better than the mean value, since the latter is more
sensitive to outliers. However, while analog implementation of the mean is trivial,
median estimators are much harder to implement in analog form (Jarske & Vainio
1993), since, traditionally, their determination has involved the operation of sorting
or ordering a set of measurements. Indeed, there is no conceptual di¯ culty in sorting
a set of discrete measurements, but it is much less obvious how to perform similar
operations for continuous signals (Bottema 1991; Ferreira 2000, 2001).

Nevertheless, fuelled by the need for robust  lters that can operate in real time
and on a low energy budget, analog implementation of traditionally digital operations
has recently gained in popularity aided by the rapid progress in analog very large
scale integration (VLSI) technology (Kinget & Steyaert 1997; Lee & Jen 1993; Mead
1989; Murthy & Swamy 1992). However, current e¬orts to implement digital signal-
processing methods in analog devices still employ an essentially digital philosophy.
That is, a continuous signal is typically passed through a delay line which samples
the signal at discrete time intervals. The individual samples are then processed by
a cascade of analog devices that mimic elemental digital operations (Li & Holmes
1988; Liu et al . 1993). Such an approach fails to exploit the main strength of the
analog processing, which is the ability to perform complex operations in a single
step, without employing the `divide and conquer’ paradigm of the digital approach.

As pointed out by some authors (Paul & H�uper 1993, for example), the major
problem in analog rank processing is the lack of an appropriate di¬erential equation
for `analog sorting’. There have been several attempts to implement such sorting
and to build continuous-time rank  lters without using delay lines and/or clock
circuits. Examples of these e¬orts include optical rank  lters (Ochoa et al . 1987),
analog sorting networks (Opris 1996; Paul & H�uper 1993) and analog rank selectors
based on minimization of a nonlinear objective function (Urahama & Nagao 1995).
However, the term `analog’ is often perceived as only `continuous time’, and thus
these e¬orts fall short of considering the threshold continuity, which is necessary for
a truly analog representation of di¬erential sorting operators. Even though Ferreira
(2000, 2001) extensively discusses threshold distributions, these distributions are
only piecewise continuous and thus do not allow straightforward introduction of
di¬erential operations with respect to threshold.

Here we introduce an approach to the analysis of signals which is based on the
consideration and full use of the continuous nature of signals registered with real

y See, for example, Arnold et al . (1992) and Sarhan & Greenberg (1962) for the de¯nitions and theory
of order statistics.
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(as opposed to idealized) acquisition systems. We address the problem of measure-
ment and analysis of signals on a consistent general basis by introducing continuous
threshold distributions of various signal properties. As described in more detail in x 3,
the threshold distributions result from the averaging of instantaneous distributions
with respect to time, space (in the case of multi-dimensional signals) and thresholds.
Since the averaging is performed by a continuous kernel (test function), we refer to
it as the analog representation of measured signals. Such a representation can be
viewed as the transformation of discrete or continuous signals into normalized con-
tinuous scalar  elds, i.e. into objects with the mathematical properties of distribution
functions. This approach allows us to successfully overcome the limitations of digital
analysis, opening up, among other possibilities, the opportunity to expand order-
statistic analysis of signals, and to provide a means for its e¯ cient implementation
in both hardware and software.

The rest of this article is organized as follows. In x 2 we consider a simple measure-
ment process involving ideal discriminators, and introduce the threshold distribution
and density functions of the amplitude of a continuous signal. These functions allow
us to de ne many useful properties of the signal. As an illustrative example, we
consider a quantile  lter of a continuous signal. Section 3 describes a more realistic
measurement of the threshold distributions and densities by means of real discrim-
inators, which can be interpreted as threshold averaging of the ideal distributions
and densities with a continuous test function. In x 4, we describe several considera-
tions leading towards a practical implementation of analog quantile  lters. Section 5
expands the de nition of threshold distributions and densities given in xx 2 and 3
to include distributions of threshold crossings, local extrema and other properties
of a signal. This section also describes analog quantile  lters for these properties.
Section 6 addresses applicability of the analysis in terms of the threshold density
functions for spatially dependent signals such as scalar and vector  elds. In x 7, we
summarize the main principles of the proposed approach and provide additional
examples of its usefulness for the analysis of signals by analog means.

Throughout this article, we try to emphasize ideas rather than the details of techni-
cal development. The examples we have chosen to illustrate these ideas were prepared
by numerically solving the appropriate di¬erential equations.y Speci c implementa-
tions, algorithms and designs of various components of analog devices based on the
proposed approach will be described in future publications.

2. Threshold distributions and analog quantile ¯lters

Even though the analysis of a signal is often considered separately from its mea-
surement, a complete understanding of signal properties requires detailed knowledge
of the acquisition system which measures the signal. Thus signal measurement and
analysis go hand in hand. In a technical sense, measurement is the process of assign-
ing numbers or other symbols as values of a variable in order to establish its relation
to a standard unit or to another variable of the same nature. One of the most basic
ways to establish such a relation is to compare the signal x(t) with a threshold, or
displacement, variable D. In practice, this can be accomplished by means of dis-
criminators. An ideal discriminator outputs a `0’ or `1’, respectively, depending on

y In all presented examples, the precision of the solutions exceeds the graphical resolution of the
respective ¯gures.

Proc. R. Soc. Lond. A (2003)



1174 A. V. Nikitin and R. L. Davidchack

whether the signal value is larger or smaller than D. Mathematically, the output of
such an ideal discriminator can be conveniently represented by the Heaviside unit
step function ³ [D ¡ x(t)]. Note that such a representation is equivalent to the signal
representation as a function of time, x(t), the only di¬erence being the introduc-
tion of the displacement variable D. This is similar to the description of algebraic
equations by the coordinate method in analytic geometry.y

(a) Time-dependent threshold distribution

Despite the apparent simplicity of representing the measurement process by means
of ideal discriminators, this method allows us to de ne many useful signal properties.
For instance, the fraction of time in the interval from 0 to T that a signal spends
below a given threshold, D, can be calculated simply as the time average of the step
function (see, for example, Nikitin et al . 1998),

© (D) =
1

T

Z T

0

dt ³ [D ¡ x(t)]: (2.1)

It is important to note that the same expression also de nes the distribution function
of a continuous signal (see, for example, Ferreira 2000, 2001) and, therefore, imme-
diately opens up possibilities to explore the order-statistic properties of a signal. For
example, the median value of the signal x(t) in the interval [0; T ] is given by the
threshold value D = Dm , such that

© (Dm ) = 1
2
: (2.2)

Equation (2.1) for the distribution function can be easily generalized for signals
within an arbitrary time window w, thereby de ning the time-dependent distribution
function as the convolution integral

© (D; t) =

Z 1

¡1
ds w(t ¡ s) ³ [D ¡ x(s)] = w(t) ¤ ³ [D ¡ x(t)]; (2.3)

where the time window function is such that w(t) > 0 and
R 1

¡1 ds w(s) = 1, and
the asterisk denotes convolution. Note that equation (2.3) represents a measurement
of the output of the ideal discriminator ³ [D ¡ x(t)] with an instrument having the
impulse time response w. The median of x(t) within the moving window w is now a
function of time, Dm = Dm (t), which is de ned implicitly by

© (Dm ; t) = 1
2
: (2.4)

This can be interpreted as the output of the median ¯lter. More generally, the quantile
 lter of order q is given by the function Dq(t), de ned implicitly as

© [Dq(t); t] = q; 0 < q < 1: (2.5)

Since the expressions (2.1) and (2.3) for the distribution function are written as
time averages of the function ³ [D ¡ x(t)], the latter can be interpreted as the instan-
taneous threshold distribution of the signal x(t). As noted above, this function is

y It is convenient for our purpose to adopt the de¯nition of the Heaviside step function such that
µ(0) ´ 1

2 (see, for example Bracewell 1978, p. 57). Then the equation µ[D ¡ x(t)] = 1
2 describes x(t) as

a curve in the plane (t; D).
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Figure 1. De¯ning output of a quantile ¯lter Dq (t) as a level curve
of the distribution function © (D; t).

simply an alternative representation of the signal. However, since ³ [D ¡ x(t)] is a
function of two variables, t and D, this representation allows us to formally introduce
an additional independent variable|the threshold coordinate D|in the description
of the signal. This introduction of the threshold coordinate provides an additional
dimension to the signal, and it is an essential feature of our approach. It enables a sim-
ple geometric interpretation of various complicated signal transformations, thereby
facilitating further developments of signal-processing techniques.

(b) Ideal analog quantile ¯lter

As an illustration, let us consider the quantile  lter de ned by equation (2.5).
Viewing the function © (D; t) as a surface in the three-dimensional space (t; D; © ),
we immediately have a geometric interpretation of Dq(t) as that of a level (or contour)
curve obtained from the intersection of the surface © = © (D; t) with the plane © = q,
as shown in  gure 1. As is well known from elementary di¬erential geometry (see,
for example, Bronshtein & Semendiaev 1997, p. 551, eqn (4.29)), it is possible to
obtain an explicit (albeit di¬erential) equation of a level curve by di¬erentiating
equation (2.5) with respect to time; speci cally

d ©

dt
=

@©

@Dq

dDq

dt
+

@©

@t
= 0; (2.6)

which yields the following di¬erential equation for Dq(t):

dDq

dt
= ¡ @© =@t

@© =@Dq
: (2.7)

The solution of this equation will follow the level curve corresponding to the output of
the quantile  lter if we choose the initial condition Dq(t0) in which © [Dq(t0); t0] = q.
Since it is well known that di¬erential equations are readily reproduced by analog
devices (see, for example, McGillem & Cooper 1991), the above representation of the
quantile  lter in terms of a di¬erential equation o¬ers evidence of the usefulness of
our approach.
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Figure 2. Representative responses of a real (continuous) discriminator and its associated
probe: (a) discriminator F¢ D (D); (b) probe f ¢ D (D) = dF¢ D (D)=dD.

The numerator and denominator on the right-hand side of equation (2.7) have the
following interpretation. The partial derivative of the distribution function © (D; t)
with respect to time is given by

@©

@t
=

dw(t)

dt
¤ ³ [D ¡ x(t)]: (2.8)

It is the time average of the instantaneous threshold distribution in a moving (di¬er-
entiating) window dw=dt. The partial derivative of © (D; t) with respect to threshold,

@©

@D
= w(t) ¤ d

dD
³ [D ¡ x(t)]; (2.9)

can be interpreted as the time-dependent threshold density of the signal x(t) in
the moving window w. This interpretation follows directly from the relationship
between the density ¿ (x) and the associated (cumulative) distribution © (x), namely
¿ (x) = d © (x)=dx. The derivative of the Heaviside unit step function ³ (x) is known
as the Dirac ¯ -function ¯ (x),y

d ³ (x)

dx
= ¯ (x): (2.10)

The expression for the threshold density of the signal x(t) in a moving window w
can thus be written as

¿ (D; t) =

Z 1

¡1
ds w(t ¡ s)̄ [D ¡ x(s)] = w(t) ¤ ¯ [D ¡ x(t)]; (2.11)

which is the time average of the instantaneous threshold density ¯ [D ¡ x(t)]. Note
that, even though the properties of the threshold distribution and density de ned
above are usually associated with those of the probability distribution and density,
the above de nitions are given for deterministic signals and do not rely on the usual
axioms of probability and statistics.

3. Real discriminators and probes

The insightful reader will immediately raise an objection that equation (2.7) is hardly
suitable for determining an output of a quantile  lter in practice. Indeed, as should

y See, for example, Dirac (1958) or Arfken (1985) for the de¯nition and properties of the Dirac ±-
function. Also note that since the Dirac ±-function is an even function equation (2.10) implies that
µ(0) ´ 1

2 .
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be clear from (2.11), the integrand in the denominator of the right-hand side of this
equation cannot be evaluated directly, since it contains a singular Dirac ¯ -function.y
It is important to realize, however, that this di¯ culty is not inherent in our approach.
Rather, it is the result of the approximation we adopted when considering the mea-
surement process that employs an ideal discriminator, capable of comparison with
in nite precision. In reality, measurements with in nite precision are unavailable. All
physical observations are limited to a  nite resolving power, and the only measur-
able quantities are the weighted means over non-zero intervals. Therefore, a more
realistic representation of the discriminator would be in terms of a continuous func-
tion, F ¢ D(D). This function changes monotonically from 0 to 1 so that most of this
change occurs over some characteristic range of threshold values ¢D, as illustrated in
 gure 2a. The distribution function of the signal x(t) in a time window w measured
by a real acquisition system is therefore expressed as

© (D; t) = w(t) ¤ F ¢ D[D ¡ x(t)]; (3.1)

where the exact shape of the real discriminator function F ¢ D(D) depends on the
properties of the acquisition system. The di¬erential equation for the quantile  lter
is still given by equation (2.7), where the distribution function © (D; t) is de ned by
equation (3.1). As before, the threshold density of a signal is given by

¿ (D; t) =
@© (D; t)

@D
= w(t) ¤ f¢ D[D ¡ x(t)]; (3.2)

where

f ¢ D [D ¡ x(t)] =
d

dD
F ¢ D[D ¡ x(t)] (3.3)

is the instantaneous threshold density of x(t), measured by the real acquisition sys-
tem. Again, the exact shape of the function f¢ D(D) will depend on the properties of
the acquisition system (that is, on the shape of the discriminator function F ¢ D(D)),
but will typically have a pronounced maximum around D = 0 and decay to zero
as jDj ! 1. As it follows from (3.3), an appropriate name for a device described
by f ¢ D(D) would be `di¬erential discriminator’. However, it is convenient to use
a simpler designation `probe’, instead of `di¬erential discriminator’, for this device.
Figure 2b shows the characteristic of the associated probe of the discriminator shown
in  gure 2a.

Note that, while the discriminator function F ¢ D(D) represents the threshold step
response of the acquisition system, the function f ¢ D(D) is the system’s threshold
impulse response. Thus the instantaneous threshold density given by equation (3.3)
can be interpreted as the threshold average, with respect to the test function f¢ D(D),
of the ideal instantaneous density; that is,

f¢ D[D ¡ x(t)] =

Z 1

¡1
dr f¢ D(D ¡ r) ¯ [r ¡ x(t)]: (3.4)

Most importantly, the threshold-averaged instantaneous density no longer possesses
singularities, and thus its evaluation does not present any conceptual di¯ culty.
Therefore, when considered within the framework of a realistic measurement process,
the di¬erential equation (2.7) can be used directly for a practical implementation of
an analog quantile  lter.

y It can also be shown that every extremum of a signal within the moving window produces a
singularity in the density function given by equation (2.11).
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(a) Explicit expression for an analog quantile ¯lter

Note, however, that a di¬erential equation is not the only possible embodiment
of an analog quantile  lter. Other means of locating the level lines of the threshold
distribution function can be developed, based on the geometric interpretation dis-
cussed above. For example, one can start by using the sifting property of the Dirac
¯ -function to write Dq(t) as

Dq(t) =

Z 1

¡1
dD D¯ [D ¡ Dq(t)] (3.5)

for all t. Then, recalling that Dq(t) is a root of the function © (D; t) ¡ q and that,
by construction, there is only one such root for any given time t, we can replace the
¯ -function of thresholds with that of the distribution function values as

Dq(t) =

Z 1

¡1
dD D¿ (D; t) ¯ [ © (D; t) ¡ q]: (3.6)

Here we have used the Dirac ¯ -function property (see, for example, Davydov 1988,
p. 610, eqn (A 15))

¯ [a ¡ f(x)] =
X

i

¯ (x ¡ xi)

jf 0(xi)j
; (3.7)

where jf 0(xi)j is the absolute value of the derivative of f(x) at xi, and the sum goes
over all xi such that f(xi) = a. We have also used the fact that ¿ (D; t) > 0.

The  nal step in deriving a practically useful realization of the quantile  lter is
to replace the ¯ -function of the ideal measurement process with a  nite-width pulse
function g ¢ q of the real measurement process, namely

Dq(t) =

Z 1

¡1
dD D¿ (D; t)g ¢ q[ © (D; t) ¡ q]; (3.8)

where ¢q is the characteristic width of the pulse. That is, we replace the ¯ -function
with a continuous function of  nite width and height. This replacement is justi ed
by the observation made earlier: it is impossible to construct a physical device with
an impulse response expressed by the ¯ -function, and thus an adequate description
of any real measurement must use the actual response function of the acquisition
system instead of the ¯ -function approximation.

It may be argued that the introduction of real discriminators constitutes an approx-
imation to the exact determination of the median and other order-statistic properties
of the signal. On the other hand, from a practical point of view, the de nitions of var-
ious signal properties involve idealized (and, therefore, approximate) models of real
measurement systems. The authors adhere to the practical philosophy and believe
that signal properties cannot be divorced from the measurement process.

(b) Analog L ¯lters and ¬ -trimmed mean ¯lters

It is worth pointing out the generalization of analog quantile  lters which follows
from equation (3.6). In the context of digital  lters, this generalization corresponds
to the L  lters described in Bovik et al . (1983).

Proc. R. Soc. Lond. A (2003)
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Indeed, we can write a linear combination of the outputs of various quantile  lters
as

DL(t) =

Z 1

0

dq WL(q)Dq(t) =

Z 1

0

dq WL(q)

Z 1

¡1
dD D¿ (D; t) ¯ [ © (D; t) ¡ q]

=

Z 1

¡1
dD D¿ (D; t)WL[ © (D; t)]; (3.9)

where WL is some (normalized) weighting function. Note that the di¬erence between
equations (3.9) and (3.8) is in replacing the narrow pulse function g¢ q in (3.8) by an
arbitrary weighting function WL.

A particular choice of WL in (3.9) as the rectangular (boxcar) probe of width
1 ¡ 2 ¬ , centred at 1

2
, will correspond to the digital ¬ -trimmed mean  lters

·D ¬ (t) =

Z 1

¡1
dD D¿ (D; t)b ¬ [ © (D; t)]; 0 6 ¬ < 1

2
; (3.10)

described in Bednar & Watt (1984), where

b ¬ (x) =
1

1 ¡ 2 ¬
[ ³ (x ¡ ¬ ) ¡ ³ (x ¡ 1 + ¬ )]:

When ¬ = 0, equation (3.10) describes the running mean  lter, ·D ¬ = 0(t) = ·x(t), and
in the limit ¬ ! 1

2
it describes the median  lter, lim ¬ ! 1=2

·D ¬ (t) = Dm (t).

4. Practical considerations

Note that a quantile  lter expressed by the di¬erential equation (2.7) employs the
quantile order q only via the initial conditions. This is not suitable for practical use,
since any deviation from the particular choice of the initial condition will result in
a di¬erent order quantile  lter. Moreover, the presence of noise will inevitably cause
the output of the  lter to drift away from the chosen value of q. It is much more
desirable to have a  lter that converges to the chosen quantile order regardless of
the initial condition. In other words, the solution of the di¬erential equation for the
chosen quantile must be stable with respect to other quantile values.

There are many ways to achieve such stability, and a particular choice will be
governed by practical considerations. One of the simplest possible approaches is to
add a term proportional to q ¡ © (Dq; t) to the right-hand side of equation (2.7),
namely

dDq

dt
= ¡ @© (Dq; t)=@t

¿ (Dq; t)
+ ¸ [q ¡ © (Dq; t)]; ¸ > 0: (4.1)

Since © (D; t) is a monotonically increasing function of D for all t, the added term
will ensure the convergence of the solution to the chosen quantile order q regardless
of the initial condition. Parameter ¸ in (4.1) is the characteristic convergence speed,
in units of `threshold per time’.

An important practical consideration for the design of any device is the simplicity
of its components. From this point of view, equation (4.1) might not be considered
to be particularly simple, mainly because of the necessity to evaluate the partial
derivatives of © , as well as the uncertainty about the choice of ¸ . Fortunately, as we

Proc. R. Soc. Lond. A (2003)
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show below, the required design simpli cation again comes from the consideration
of a realistic measurement process. Indeed, the reality of physical measurements is
such that any sensor|as well as the acquisition system as a whole|has a certain
inertia. The inertial properties of a measuring device are usually described by its
transient characteristic, i.e. by the response of the device to a unit step of the input
signal. Such a response for many physical sensors is well represented by the function
H ½ = ³ (t)(1 ¡ e¡t=½ ), where ½ is the characteristic response time. This means that
the total impulse time response of a typical measuring device is given by

w(t) = h ½ (t) ¤ wT (t); (4.2)

where

h ½ =
dH ½

dt
= ³ (t) exp

µ
¡ t

½
¡ ln ½

¶
;

and wT is the desired (or designed) impulse response of the device. For example, if
wT is the impulse time response of an electric ampli er, and the resistance R and
capacitance C of the connecting cable are such that RC = ½ , then the total impulse
time response w(t) of the apparatus composed of the ampli er and the cable will be
given by equation (4.2).

When the time impulse response of the measuring system is given by (4.2), we can
relate the derivative of w(t) to the function itself via

dw

dt
=

dh ½

dt
¤ wT (t) =

1

½
[ ¯ (t) ¡ h ½ (t)] ¤ wT (t) =

1

½
[wT (t) ¡ w(t)]: (4.3)

We can use this formula to rewrite the numerator in equation (2.7) as

@©

@t
=

dw(t)

dt
¤ F ¢ D[D ¡ x(t)] =

1

½
fwT (t) ¤ F ¢ D[D ¡ x(t)] ¡ © (D; t)g: (4.4)

This leads to the following di¬erential equation for the analog quantile  lter:

dDq

dt
=

© (Dq; t) ¡ wT (t) ¤ F ¢ D [Dq ¡ x(t)]

½ h ½ (t) ¤ wT (t) ¤ f¢ D[Dq ¡ x(t)]
: (4.5)

In order to ensure the convergence of the solution to a given quantile order q, we can
replace © (Dq; t) with q, arriving at a simple result,

dDq

dt
=

q ¡ wT (t) ¤ F ¢ D [Dq ¡ x(t)]

½ h ½ (t) ¤ wT (t) ¤ f¢ D[Dq ¡ x(t)]
; (4.6)

which is equivalent to choosing the characteristic speed of convergence ¸ in equa-
tion (4.1) as ¸ = f ½ h ½ (t) ¤ wT (t) ¤ f ¢ D [Dq ¡ x(t)]g¡1.

The shortcoming of a  lter given by equation (4.6) is that the convolution integrals
on its right-hand side need to be re-evaluated (updated) for each new value of Dq.
Since we would rather employ a  lter in a simple feedback circuit, the  nal step in
the practical implementation of an analog quantile  lter should be to replace the
right-hand side of equation (4.6) by an approximation which can be easily evaluated
by such a circuit. Of course, one can employ a great variety of such approximations
(see, for example, Bleistein & Handelsman 1986; Copson 1967; Erd́elyi 1956), whose
suitability will depend on the particular goal. Although a detailed discussion of these
approximations is beyond the scope of this article, we provide an example of one such
approximation in the next section.

Proc. R. Soc. Lond. A (2003)



Signal analysis through analog representation 1181

(a) Analog rank selectors

As an illustration, let us consider the impulse time response function w composed
of a ( nite) train of inertial impulse response functions h ½ as

w(t) =
X

k

wkh ½ (t ¡ tk) = h ½ (t) ¤
X

k

wk ¯ (t ¡ tk); (4.7)

where
P

k wk = 1. In other words, the desired impulse time response of the device is
wT =

P
k wk ¯ (t ¡ tk).

Now notice that when ½ is su¯ ciently small (i.e. when x(t) is well approximated,
about any t, by the  rst few terms of its expansion in powers of ½ y), the only signi -
cant contribution to the integral h ½ (t) ¤ f ¢ D [Dq ¡ x(t)] will come from the immediate
vicinity of the point s = t. Thus we can replace this integral by its approximation as

h ½ (t) ¤ f¢ D[Dq ¡ x(t)] =
1

½

Z t

¡1
ds exp

µ
s ¡ t

½

¶
f¢ D[Dq(t) ¡ x(s)]

º 1

½

Z t

¡1
ds exp

µ
s ¡ t

½

¶
f¢ D[Dq(s) ¡ x(s)]

= h ½ (t) ¤ f¢ D [Dq(t) ¡ x(t)]: (4.8)

Substitution of (4.7) and (4.8) into equation (4.6) leads to the approximate expres-
sions for a quantile  lter,

dDq

dt
º q ¡

P
k wkF ¢ D [Dq(t) ¡ x(t ¡ tk)]

½ h ½ (t) ¤
P

k wkf¢ D[Dq(t) ¡ x(t ¡ tk)]
; (4.9)

dDq

dt
º q ¡

P
k wkF ¢ D[Dq(t ¡ tk) ¡ x(t ¡ tk)]

½
P

k wkfh ½ (t ¡ tk) ¤ f¢ D [Dq(t ¡ tk) ¡ x(t ¡ tk)]g ; (4.10)

both of which can be solved by analog feedback circuits.
Figure 3 illustrates the performance of an analog quantile  lter given by equa-

tion (4.9) by comparing its quartile outputs (q = 1
4
, 1

2
and 3

4
) with the respective

outputs of a digital order-statistic  lter in a rectangular moving window wT of width
T . In this example, a particular form of a discriminator function

F ¢ D(D) =
1

2
+

1

º
arctan

µ
D

¢D

¶

is used, and the width parameters ¢D and ½ are chosen to be relatively large in
order to better reveal the behaviour of the analog  lter.

An important special case of (4.9) and (4.10) is an analog rank selector, given by
the following equation:

dDq

dt
=

Nq ¡
PN

k = 1 F ¢ D [Dq(t) ¡ xk(t)]

½ h ½ (t) ¤
PN

k = 1 f¢ D[Dq(t) ¡ xk(t)]
: (4.11)

The output Dq(t) of this selector is the qth rank of N (independent) signals xk(t),
k = 1; : : : ; N . For example, for q = (2N )¡1 the selector will output the minimum

y Within the framework of a realistic measurement process, ¿ should not be much larger than the
characteristic response time of the acquisition system employed for measuring the signal x(t).
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D1/4(t)

t2
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00

D
D

wT (t)
w(t) = h  (t) * wT (t)

T

t

Figure 3. Illustration of the performance of an analog quantile ¯lter given by equation (4.9) by
comparing its quartile outputs (q = 1

4 , 1
2 and 3

4 , solid black lines) with the respective outputs
of a digital order-statistic ¯lter in a rectangular moving window wT of width T (dashed lines).

and, for q = 1 ¡ (2N )¡1, the maximum among the incoming signals xk. Figure 4
provides an illustration of the performance of an analog rank selector according to
equation (4.11) for four signals.

5. Counting density and distribution of local extrema

Earlier we showed that the introduction of the threshold distribution of the signal x(t)
and the consideration of a realistic acquisition system enables the development of an
analog  lter capable of extracting the order-statistic properties of a continuous signal.
Note, however, that until now we have only considered the threshold distribution of
the signal amplitude, which is just one of many characteristics of the signal. Here we
show that threshold distributions of other signal characteristics can be introduced
in a similar fashion, greatly expanding the scope of meaningful information that can
be extracted from the signal.

As an example, let us consider the threshold crossing (also known as zero cross-
ing), or counting rate. This characteristic is often used as an indicator of the signal
variability and its bandwidth (see, for example, Huang et al . 1998; Rice 1944, 1945),
and it provides the basis for pulse-height analysis in the acquisition of nuclear radi-
ation spectra (see, for example, Freundlich et al . 1947). It is de ned as the number
of crossings of a given threshold by the signal per unit of time.

Let us consider a single scalar continuous-time signal x(t). First, we notice that the
total number of counts, N (D), i.e. the total number of crossings of the threshold D
by the signal x(t) in the time interval 0 6 t 6 T , can be written as (see, for example,

Proc. R. Soc. Lond. A (2003)



Signal analysis through analog representation 1183

x4(t) D3/8(t)

D1/2(t)

t100

x3(t)

x2(t)

x1(t)

Figure 4. Example of performance of an analog rank selector according to equation (4.11) for
four signals (x1 (t) through x4 (t), thin dashed lines). The thick dashed line shows the median
(q = 1

2 in (4.11)), and the solid line shows the 3rd octile (q = 3
8 in (4.11)).

Nikitin et al . 1998)

N (D) =
X

i

Z T

0

dt ¯ (t ¡ ti); (5.1)

where ¯ (x) is the Dirac ¯ -function, and ti are such that x(ti) = D for all i. Using the
identity (3.7), we can rewrite equation (5.1) as

N (D) =

Z T

0

dt j _x(t)j ¯ [D ¡ x(t)]; (5.2)

where the dot over x denotes the time derivative. Thus the expression

R(D) =
1

T

Z T

0

dt j _x(t)j ¯ [D ¡ x(t)] (5.3)

de nes the counting rate or threshold crossing rate.
Replacing the rectangular weighting function in equation (5.3) by an arbitrary

moving window w, the rate of crossing of the threshold D by the signal x(t) can be
written as the convolution integral

R(D; t) =

Z 1

¡1
ds w(t ¡ s)j _x(s)j ¯ [D ¡ x(s)] = w(t) ¤ fj _x(t)j ¯ [D ¡ x(t)]g: (5.4)

Notice that now the threshold crossing rate depends on time explicitly, and that
the rates of upward (+) and downward ( ¡ ) crossings can be obtained separately
by employing the factor ³ (§ _x) on the right-hand side of equation (5.4).y Note

y It is instructive to note that equation (2.7) for the quantile ¯lter can be written in terms of the
upward and downward crossing rates as dDq =dt = [R + (Dq ; t) ¡ R ¡ (Dq ; t)]=Á(Dq ; t). This provides a
basis for yet another implementation of such a ¯lter in an analog device.
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Figure 5. (b) Amplitude and (c) counting densities computed for the fragment of
a signal from a damped oscillator, shown in (a).

also that the physical meaning of equation (5.4) is measuring the counting rate
by an ideal probe f¢ D(D ¡ x) = ¯ (D ¡ x) with impulse time response w(t). SinceR 1

¡1 dD R(D; t) = w(t) ¤ j _x(t)j, the counting (threshold crossing) density can be
written asy

» (D; t) =
w(t) ¤ fj _x(t)j ¯ [D ¡ x(t)]g

w(t) ¤ j _x(t)j : (5.5)

The signi cance of the de nition of the time-dependent counting (threshold cross-
ing) density, equation (5.5), arises from the fact that it characterizes the rate of
change in the analysed signal, which is one of the most important characteristics of
a dynamic system. Note that, while the amplitude density given by equation (2.11)
is proportional to the time the signal spends in the vicinity of a certain threshold,
the counting density is proportional to the number of `visits’ to this vicinity by the
signal. It is also important to notice that, unlike the amplitude density given by
equation (2.11), the counting density is not singular,z which signi cantly simpli es
the practical measurements of the counting density. Indeed, it is easy to show that
the numerator of equation (5.5) is simply equal to

P
i w(t ¡ ti), where the sum is

taken over all ti such that x(ti) = D. Figure 5 shows both the amplitude and count-
ing densities computed for the fragment of a signal from a damped oscillator. Note
that the amplitude density has a sharp peak at every signal extremum, while the
counting density has a much more regular shape.

Employing real instead of ideal discriminators, and the time window w = h ½ ¤ wT ,
we can write an equation for a quantile counting ¯lter as

dDq

dt
=

wT (t) ¤ fj _x(t)j(q ¡ F ¢ D[Dq ¡ x(t)])g
½ w(t) ¤ fj _x(t)jf ¢ D [Dq ¡ x(t)]g : (5.6)

y See an alternative derivation of equation (5.5), clarifying its physical meaning, in Appendix A.

z Unless, of course, w(t) ¤ j _x(t)j ´ 0.
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Figure 6. Responses of (a) amplitude and (b) counting quantile ¯lters to a triangular pulse.

Let us illustrate the di¬erence between the outputs of amplitude and counting
quantile  lters with a geometrical example. Consider, for simplicity, a rectangular
time window of width T . Let us draw the signal x(t) as a curve in the plane (t; D).
Imagine that a point travels along this curve from t = 0 to t = T . The total distance
travelled by this point in the horizontal direction will be T , and the total distance
travelled in the vertical direction will be

R T

0
dtj _x(t)j. Now, if we draw the horizontal

line D = Dq so that the distance travelled by the point in the horizontal direction
while staying below Dq is qT , then Dq will be the output of the amplitude quantile
¯lter. If we draw this line so that the distance travelled by the point in the vertical
direction while staying below Dq is q

R T

0
dtj _x(t)j (that is, the qth fraction of the

total), then Dq will be the output of the counting quantile ¯lter. Thus the results of
amplitude and counting quantile  ltering will be fundamentally di¬erent. Figure 6
illustrates these di¬erences by showing the responses of the amplitude and counting
quantile  lters to a triangular pulse. Note that the amplitude  lter has a non-zero
output only if the duration of the pulse exceeds a (1 ¡ q)th fraction of the width of
the moving window, while the counting  lter works in a `sample-and-hold’ fashion
for the total duration of this window.

(a) Counting density for vector signals and modulated threshold density

It is instructive to note that the de nitions for threshold crossing rates and den-
sities can be generalized for multi-component (vector) signals. For instance, such a
signal can be a two-dimensional vector composed of two scalar signals, which can be
of a di¬erent physical nature, x = (x1; x2). Then, for example, we can measure the
rate of crossings of the signal with the threshold D = (D1; D2). The expression for
such a rate can be written as

R(D; t) = w ¤ (
p

( _x1¢D2)2 + ( _x2¢D1)2

£ f¢ Df
p

[(D1 ¡ x1)¢D2]2 + [(D2 ¡ x2)¢D1]2g); (5.7)
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where the width parameter of the probe is ¢D = ¢D1¢D2. Note that equation (5.7)
describes the rate of crossings of the vicinity of the point D rather than the rate of
crossings of this point itself. This distinction is important for a physical interpretation
of the crossing rates of vector signals, since it is meaningless to de ne the rate of
hitting of an in nitesimally small (point) target in more than one dimension.

Such an extension to densities of multi-component signals also allows us to intro-
duce a variety of conditional distributions and densities. For example, the choice
x = (x; _x) and D = (D; 0) leads to

¿ (D; t) =
w(t) ¤ fj �x(t)jf¢ D _x

[ _x(t)]f ¢ Dx
[D ¡ x(t)]g

w(t) ¤ fj �x(t)jf¢ D _x
[ _x(t)]g ; (5.8)

an expression for the density of stationary pointsy in the signal x(t), where we have
assumed that f¢ D _x

is an even function. In practice, a device based on equation (5.8)
would constitute an analog implementation of a pulse-height analyser (Nikitin et al .
2003).

To conclude this section, let us point out that various threshold densities given by
equations (3.2), (5.5) and (5.8) can be viewed as di¬erent appearances of a general
modulated threshold density

¿ (D; t) =
w(t) ¤ fK(t)f ¢ D [D ¡ x(t)]g

w(t) ¤ K(t)
; (5.9)

where K(t) is a unipolar modulating signal. Various choices of the modulating signal
allow us to introduce di¬erent types of threshold densities and impose di¬erent con-
ditions on these densities. For example, the simple amplitude density of (3.2) is given
by the choice K(t) = const:, and setting K(t) equal to j _x(t)j leads to the counting
density of equation (5.5).

An expression for the quantile  lter for a modulated density can be written as

dDq

dt
=

wT (t) ¤ fK(t)(q ¡ F ¢ D [Dq ¡ x(t)])g
½ w(t) ¤ fK(t)f¢ D[Dq ¡ x(t)]g ; (5.10)

and the physical interpretation of such a  lter depends on the nature of the mod-
ulating signal. For example, a median  lter in a rectangular moving window for
K(t) = j �x(t)jf¢ D _x

[ _x(t)] yields D1=2(t) such that half of the extrema of the signal
x(t) in the window are below this threshold.

6. Threshold densities of spatially dependent signals

Although most of the examples in the previous sections employ simple scalar signals,
the consideration of real measurements allows us to treat various other types of
signals on a similarly general and consistent basis. In other words, by employing
threshold coordinates, we generally can describe a (vector  eld) variable x(a; t) in
terms of its density function in the threshold space, i.e. in terms of a continuous
positive-valued function ’(x; a; t) such that

Z 1

¡1
dnr ’(r; a; t) = 1; (6.1)

y Points (ti ; x(ti)) are stationary when _x(ti ) = 0.
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where x is the threshold coordinate (an n-dimensional vector x = (x1; : : : ; xn)), a is
a spatial coordinate, t is time, and

R 1
¡1 dnr ¢ ¢ ¢ =

R 1
¡1 dr1 ¢ ¢ ¢

R 1
¡1 drn ¢ ¢ ¢ denotes the

integral over all threshold space. There are numerous ways to construct a continuous
density function for a given variable (see Nikitin & Davidchack 2003). The description
of a variable in terms of its density function allows us to reformulate many problems
of traditional signal analysis and cast them in a form which is readily addressed
by methods of di¬erential calculus rather than by algebraic or logical means. This
allows a more e¯ cient computational implementation of various signal-processing
techniques as well as the implementation of these techniques by continuous action
machines.

Consider, for example, a two-dimensional scalar  eld variable x = x(a; t) repre-
senting a monochrome image, where x is the colour intensity at a = (a1; a2) and
time t. Let us design a  lter for removing impulse noise from this image.y Assume
that we measure the colour intensity by a continuous probe f¢ D with the colour
resolution ¢D and impulse time response h ½ (t), and that the e¬ect of the  nite spa-
tial resolution of the instrument amounts to spatial averaging with the test function
fR(a) (spatial impulse response). Then we can write a threshold density function for
x = x(a; t) as

’(D; a; t) = h ½ (t) ¤ fR(a) ¤ f¢ D[D ¡ x(a; t)]: (6.2)

Thus an equation for a quantile  lter can be written as

dDq(a; t)

dt
=

q ¡ fR(a) ¤ F ¢ D [Dq ¡ x(a; t)]

½ h ½ (t) ¤ fR(a) ¤ f¢ D[Dq ¡ x(a; t)]
: (6.3)

Such a  lter is highly e¯ cient for removing the dynamic impulse noise as well
as static impulse noise from an image, as illustrated in  gure 7. In this example,
a median  lter (q = 1

2
) according to equation (6.3) is used.z Figure 7a shows the

original (uncorrupted) image;  gure 7b shows the snapshots, at di¬erent times, of the
noisy image and the respective outputs of the  lter. In this example, approximately
four out of  ve pixels in the original image are a¬ected by a bipolar non-Gaussian
random noise at any given time. Figure 7c provides an example of removing the
static noise (one-third of the pixels of the original image are a¬ected). This example
also illustrates the fact that the characteristic convergence time of the  lter given by
(6.3) is only a small fraction of the time constant ½ . This is a consequence of the fact
that the speed of convergence ¸ = fh ½ (t) ¤ fR(a) ¤ f¢ D[Dq ¡ x(a; t)]g¡1 is inversely
proportional to the density function.

7. Discussion

The key component of the approach to the analysis of signals presented here is the
introduction of threshold ¯lters, where the basic component of a threshold  lter is
a discriminator. Threshold  lters allow us to introduce a new independent variable,
the threshold variable, and thus provide an additional dimension for the description

y Some properties of analog rank ¯lters with respect to additive and multiplicative noise, based on
the concept of noise width, are discussed in Ferreira (2001).

z In general, the quantile order of the ¯lter should be chosen as q = © n (0), where ©n is the amplitude
distribution of the noise (either measured or known a priori ). In the example in this section, © n (0) = 1

2 .
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Figure 7. Removing static and dynamic impulse noise from a monochrome image.

of the signal. In addition, by employing discriminators described by a continuous
function, we enable di¬erentiation with respect to the threshold variable. By using
threshold  lters in combination with linear time  lters, we represent the analysed
signal in terms of the (time-dependent) scalar  elds of the threshold variable, and we
enable simple implementation of the operations of di¬erential calculus on these  elds.
Such a representation of a signal in terms of the threshold distributions continuous
in both threshold and time provides a means for fruitful reformulation of numerous
signal-processing tasks. For example, by selecting proper di¬erential operators in
combination with threshold and time  lters, we can de ne analog equivalents of
digital stack  lters, such as those described in Wendt et al . (1986). The L  lters and
¬ -trimmed mean  lters of x 3 b describe two special cases of such analog stack  lters.
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Figure 8. Threshold smoothing ¯lter (probe) for a two-dimensional vector signal.

In this article, we have avoided the discussion of practical hardware realization of
threshold  lters. Such realization should be quite straightforward for scalar signals.
For example, for electrical signals, a threshold  lter can simply be a nonlinear ampli-
 er with the input{output characteristic described by a linear combination of various
discriminators, the latter being di¬erent transconductance ampli ers described, for
instance, in Mead (1989) and Urahama & Nagao (1995). It might be more di¯ cult
to envision a physical system corresponding to a threshold  lter for vector signals.
Several examples of such  lters are given in Nikitin & Davidchack (2003), and in
Appendix B we provide a simpli ed illustration of a threshold smoothing  lter for a
two-dimensional vector signal.

Although any signal x(t), deterministic as well as stochastic, can be transformed
into a threshold distribution function, the formal similarity of the latter with a prob-
ability function allows us to explore probabilistic analogies and interpretations. For
example, we can provide the following probabilistic interpretation of the threshold
distribution given by equation (2.3): if s is a random variable with the density func-
tion w(t ¡ s), then © (D; t) is the probability that x(s) does not exceed D. Such
a probabilistic interpretation allows us to use quantile  lters of di¬erent orders to
construct a variety of (time-dependent) `statistical’ estimators of signal properties,
like those based on rank tests or linear combinations of order statistics. For instance,
Tukey’s trimean (Tukey 1977)  lter can be de ned as

DTt(t) = 1
2
D1=2(t) + 1

4
[D1=4(t) + D3=4(t)]; (7.1)

where DTt is the trimean value, and D1=4 and D3=4 are the  rst and third quartiles
of the distribution, respectively.

The probabilistic interpretation of the density functions employed in our approach
becomes even more fruitful when we consider multivariate density functions. Such an
interpretation enables us to construct a variety of `rank-test’ estimators of the simi-
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larity between a pair of variables in a ®exible way, allowing a meaningful adaptation
to particular problems (see Nikitin & Davidchack 2003). For example, the quantile
function

Q(x; a; t) =

Z 1

¡1
dnr ’(r; a; t) ³ [’(x; a; t) ¡ ’(r; a; t)] (7.2)

can be given the following probabilistic interpretation. If r is a random variable
with density function ’(r; a; t), then, for a given x, Q(x; a; t) is the probability that
’(x; a; t) exceeds ’(r; a; t). This function can be a highly e¯ cient tool in pattern
recognition (A. V. Nikitin, D. V. Popel, R. L. Davidchack and S. N. Yanushkevich
2002, unpublished research).

It is important to realize that even though order-statistic  ltering is commonly
considered to belong to the domain of signal processing, many other technical  elds
require similar analyses. For example, consider a solution to the well-known problem
of stabilizing the intensity of a light source such as a mercury-vapour lamp or a xenon
arc lamp, by controlling only one of the parameters a¬ecting, in a monotonic fash-
ion, this intensity. One can control, for example, only the current. The problem of
controlling the intensity of such a source can be described as © [Iq(t); t] = q, where q
is the desired intensity, Iq(t) is the (controlled) current, and the explicit time depen-
dence of © represents the combined e¬ect of other factors such as the voltage and the
ambient temperature (A. V. Nikitin 1986, unpublished research). Since the depen-
dence of the intensity on the current is monotonic, one can immediately recognize
that this problem is equivalent to  nding a qth rank of the signal I(t).

We express our sincere appreciation to Keith M. Ashman, Robert J. Fraga, Mircea Martin, and
Denis V. Popel, all of Baker University, for their valuable suggestions and critical comments. We
also thank Thomas P. Armstrong of Fundamental Technologies, LLC, who provided criticism,
support and facilities during the preparation of this manuscript. Furthermore, we acknowledge
Vadim N. Yakovenko of Khabarovsk State University of Technology and Viktor V. Nekrasov
of the Karpov Institute of Physical Chemistry, whose ideas on the instrumentation for optical
spectroscopy inspired the mathematical development of this article.

Appendix A.

The meaning of equation (5.5) can be clari ed by its derivation from another rea-
soning as follows. Note that a threshold crossing occurs whenever the signal x(t) has
the value D, and its  rst time derivative has a non-zero value, _x 6= 0. The density
of such events can then be expressed in terms of the joint density ’(D; D _x; t) of the
amplitudes of the signal and its time derivative as

» (D; t) =

R 1
¡1 dD _x jD _xj’(D; D _x; t)

R 1
¡1 dD

R 1
¡1 dD _x jD _xj’(D; D _x; t)

: (A 1)

Indeed, the numerator on the right-hand side of this equation is the average absolute
value of _x(t) at the threshold D, per in nitesimally small threshold interval ¢D.
Thus it is the counting rate. The denominator on the right-hand side of (A 1) is just
the average j _x(t)j. The ratio of these quantities is the counting density.

As follows from (2.11), the expression for the joint density is

’(D; D _x; t) = w(t) ¤ ¯ [D ¡ x(t)] ¤ ¯ [D _x ¡ _x(t)]: (A 2)

Substitution of equation (A 2) into (A 1) immediately leads to the expression (5.5)
for the counting density.
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Appendix B.

Consider the following simpli ed illustration of a threshold smoothing  lter (probe)
transforming a two-dimensional vector signal r = (rx; ry) into an instantaneous
threshold density fR(D ¡ r), where R is the width parameter of the probe.

The probe shown in  gure 8 consists of a point light source S and a thin lens with
focal length g. The transparency of the lens is described by f2g(r), and the lens is
placed in an (X; O; Y )-plane at a distance 2g from the source S. Assume that the
centre of the lens is at 2gr=(4g ¡ R), and we measure the intensity of the light at
the location D = (Dx; Dy) in the (Dx; O; Dy)-plane. The latter is parallel to the
(X; O; Y )-plane and is located at a distance R from the image S0 of the source S ,
toward the source. This intensity can be described by fR(D ¡ r), and thus can be
considered an instantaneous threshold density of r. Notice that, while the input signal
is the position of the centre of the lens (times (4g ¡ R)=2g) in the (X; O; Y )-plane,
the threshold- ltered signal is the light intensity at D in the (Dx; O; Dy)-plane.

If we now cover the (Dx; O; Dy)-plane with luminophor with the afterglow half-
time ½ ln 2, then the intensity of light emitted by the luminophor at D will correspond
to the threshold density ’(D; t) = h ½ (t) ¤ fR[D ¡ r(t)]. If fR is described by a two-
dimensional Gaussian function, then modulation of the intensity of the source S by
j _rj leads to the emitted intensity at D being proportional to the rate of crossings of
the signal r with the threshold D, as described by equation (5.7).
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