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Abstract

Characterizing rates of occurrence of various features of a signal is of great importance in numerous types of physical

measurements. Such signal features can be defined as certain discrete coincidence events, e.g. crossings of a signal with a

given threshold, or occurrence of extrema of a certain amplitude. We describe measuring rates of such events by means

of analog multivariate counting analyzers. Given a continuous scalar or multicomponent (vector) input signal, an

analog counting analyzer outputs a continuous signal with the instantaneous magnitude equal to the rate of occurrence

of certain coincidence events. The analog nature of the proposed analyzers allows us to reformulate many problems of

the traditional counting measurements, and cast them in a form which is readily addressed by methods of differential

calculus rather than by algebraic or logical means of digital signal processing.

Analog counting analyzers can be easily implemented in discrete or integrated electronic circuits, do not suffer from

dead time effects, and allow substantial reduction of pileup effects. Besides extending the scope of counting

measurements, analog multivariate counting analyzers allow simple feedback adjustment of the parameters of the

acquisition system for optimal performance. In addition, such analyzers can be made simpler, cheaper, lighter, more

reliable, more accurate, and less power consuming than digital counting detectors, and thus would be ideally suited for

operation in autonomous conditions such as mobile communication, space missions, prosthetic devices, etc. Other

obvious immediate applications of the presented analyzers are pulse-height measuring systems used in the acquisition of

nuclear radiation spectra.
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1. Introduction

A so-called counting detector as defined in [1,2]4

provides a basis for pulse-height analysis in
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systems for acquisition of nuclear radiation
spectra [3–5]. An idealized mathematical model
for such a detector is equivalent to a problem of
counting the crossings of some threshold D by a
continuous signal xðtÞ: Even though such an
idealized model might seem convenient for theore-
tical analysis and ‘mental experimentation’, it does
not correctly represent real physical measure-
ments. Indeed, this model requires exact localiza-
tion of crossings in both the amplitude and the
time, that is, an infinite amplitude and time
resolution. In reality, however, measurements with
infinite precision are unavailable. All physical
observations are limited to a finite resolving
power, and the only measurable quantities are
the weighted means over non-zero intervals.

On the one hand, the exact mathematical
treatment of the threshold crossing problem
requires usage of discontinuous and singular
functions such as the Heaviside unit step function
and the Dirac d-function [1,2]. On the other hand,
as a simple consequence of inertial properties of a
physical system, there are no physically realizable
systems with responses described by these func-
tions. Thus, straightforward attempts to reproduce
an ideal counting system in hardware devices face
various technical difficulties. Indeed, a realistic
hardware implementation of a counting detector is
always a trade-off between the amplitude and time
resolution [6–8].

In practice, the attempts to increase both the
amplitude and time resolution lead to the escala-
tion of circuit complexity. This in turn increases
the cost, weight, and power consumption of the
equipment, while decreasing its reliability. Regard-
less of the magnitude of the technical efforts, the
resulting acquisition systems will still suffer from
the pileup and dead time effects.

The instrumentation for the acquisition of
radiation spectra has traditionally been predicated
on the assumption that the signal consists of nice
clean pulses which are well separated and rise from
(and return to) a solid reference level or baseline.
Departures from these ideal conditions, such as an
irregularly moving baseline and the partial super-
imposition of pulses, have been dealt with on a
more or less ad hoc basis, with the development of
gated baseline restorers, pileup rejectors and other

specialized hardware tricks to circumvent the
problems [9–13]. Almost every one of these
‘band-aid’ solutions has introduced an associated
problem which was not there in the first place, and
ultimately all of them have been essentially brute
force attempts to modify the signal and force it to
behave according to the criteria required by the
design of conventional systems.

Thus, in the traditional approach to pulse-
height analysis, the counting problem is first
reduced to an idealized mathematical model.
Then, this idealized problem is addressed by non-
ideal means, thus creating a variety of technical
difficulties. These, in turn, are considered in terms
of idealized models, breeding new technical
complications. We present here a re-formulation
of the initial problem in mathematical terms easily
reproducible in physical devices, which remedies
many of the shortcomings of the usual approaches
to the counting measurements.

Our approach is to recognize the non-ideal nature
of a measured signal and devise an analog processor
designed to deal with such problems as shifting
baseline and changing count rate, by using a real-
time self-adaptive strategy. In the development of the
mathematical underpinnings which follow, the
threshold D; for example, is treated as a variable—
not a constant. It is also recognized that whatever
device is used as the threshold discriminator, it will
never have the perfect and unambiguous properties
which the use of d-functions and Heaviside step
functions assumes. A practical device will have finite
resolution, hysteresis, time lag, and other non-ideal
properties. Accordingly, after the basic mathematical
principles have been presented, non-ideal functions
which emulate the essential properties of the real-
world threshold discriminators are introduced to
replace the discontinuous functions. These can be
modeled with software to provide predictions of
their performance. Some results of this modeling are
presented in the subsequent sections.

2. Measuring threshold crossing rates by an analog

circuit

In a technical sense, measurement is the process
of assigning numbers or other symbols as values of
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a variable, in order to establish its relation to a
standard unit or to another variable of the same
nature. One of the most basic ways to establish
such a relation is to compare the signal xðtÞ with a
threshold, or displacement, variable D: In practice,
this can be accomplished by means of discrimina-

tors. An ideal discriminator outputs ‘0’ or ‘1’
depending on whether the signal value is larger or
smaller than D; respectively. Mathematically, the
output of such an ideal discriminator can be
conveniently represented by the Heaviside unit
step function y½D � xðtÞ�: The approach to count-
ing described later in this paper arises out of this
basic model of conducting measurements by
means of discriminators.

The rate of crossings of the threshold D by a
continuous signal xðtÞ in the time interval 0ptpT

can be written as [2]5

RðDÞ ¼
1

T

Z T

0

dt
@

@t
y½D � xðtÞ�

����
����

¼
1

T

Z T

0

dtj ’xðtÞj d½D � xðtÞ� ð1Þ

where y is the Heaviside unit step function, j ’xj is
the absolute value of the signal’s derivative, and d
is the Dirac d-function.6 As illustrated in Fig. 1,
Eq. (1) represents measurement of threshold cross-
ing rates by means of an ideal discriminator.
Indeed, counting the number of intersections of
xðtÞ with D (Fig. 1(a)) is equivalent to counting the
number of switches of the output of the discrimi-
nator y½D � xðtÞ� between ‘0’ and ‘1’ (Fig. 1(b)).
The latter counting can be performed by integrat-
ing the absolute value of the time derivative of
y½D � xðtÞ� over the total time interval (Fig. 1(c)).

Replacing the rectangular weighting function in
Eq. (1) by an arbitrary moving window w (normal-
ized so that

R
N

�N
ds wðsÞ ¼ 1),7 the rate of crossing

of the threshold D by the signal xðtÞ can be written

as the convolution integral

RðD; tÞ ¼
Z

N

�N

ds wðt � sÞj ’xðsÞjd½D � xðsÞ�

�wðtÞ*fj ’xðtÞjd½D � xðtÞ�g ð2Þ

where the asterisk denotes convolution, and the
expression in the curly brackets can be interpreted
as the instantaneous crossing rate. The modifica-
tion of Eq. (2) for the rates of upward ðþÞ and
downward ð�Þ crossings, separately, is obvious:

R7ðD; tÞ ¼ wðtÞ*fj ’xðtÞjy½7 ’xðtÞ�d½D � xðtÞ�g: ð3Þ

One might raise an objection that Eqs. (2) and (3)
are hardly suitable for determining the counting
rates in practice. First, these equations contain the
time derivative of the signal. Second, their integrands
employ a generalized function (the Dirac d-function)
which cannot be directly evaluated.

The fact that Eqs. (2) and (3) contain the derivative
of the signal xðtÞ; something which is not a trivial
problem to measure in real time with digital
techniques, does not pose a problem in the analog
domain. Since physical sensors—as well as various
other components of an acquisition system—have
certain inertia, they have continuous time responses
(typically exponential). This means that the output
signal is a convolution integral of the input signal with
these impulse responses, and that intermediate signals
will be available before and after some stage or stages
of integration. It is then a simple matter to obtain the
derivative of the output signal as the real-time
difference between these intermediate signals.

Consider, for example, a signal x1ðtÞ passing
through an RC-integrator as shown in Fig. 2,
where R1C1 ¼ t1: Then the relation between the
input signal x1ðtÞ and the output xðtÞ is given by

xðtÞ ¼ ht1ðtÞ*x1ðtÞ ð4Þ

where

ht1 ðtÞ ¼ yðtÞ
1

t1
e�t=t1 : ð5Þ

Taking the derivative of ht1 ðtÞ leads to the
following formula:

’ht1 ðtÞ ¼ dðtÞ
1

t1
e�t=t1 � yðtÞ

1

t21
e�t=t1

¼
1

t1
½dðtÞ � ht1ðtÞ� ð6Þ

5Derivation of Eq. (1) is also given in Appendix A.
6The Heaviside unit step function and the Dirac d-function

are related as dyðxÞ=dx ¼ dðxÞ [14].
7The relationship between time averaging with a weighting

function wðtÞ and the boxcar averaging is discussed in the next

section.

A.V. Nikitin et al. / Nuclear Instruments and Methods in Physics Research A 496 (2003) 465–480 467



where we have used the relation dy ðtÞ=dt ¼ dðtÞ
and the fact that f ðtÞ dðtÞ ¼ f ð0ÞdðtÞ (see [14] for
example). Then the time derivative of a signal
satisfying Eq. (4) can be written as

’xðtÞ ¼ ’ht1 ðtÞ*x1ðtÞ ¼
1

t1
½x1ðtÞ � xðtÞ� ð7Þ

which, upon substitution into Eq. (2), leads to the
following formula for computing the counting
rates:

RðD; tÞ ¼
1

t1
wðtÞ*fjx1ðtÞ � xðtÞj d½D � xðtÞ�g: ð8Þ

Let us emphasize that Eq. (7) expresses the time
derivative of the measured (output) signal xðtÞ
rather than the ‘intermediate’ signal x1ðtÞ: Thus we
do not try to differentiate the signal by introducing

any additional circuitry, which would result in
alteration of the signal. We simply acknowledge
the fact that a typical physical device already
contains inertial elements, and thus time deriva-
tives of the output can be accurately measured by
‘stepping back’ across such elements and con-
structing linear combinations of the intermediate
signals. For example, by differentiating xðtÞ
according to Eq. (7) we actually restore the high-
frequency components of the signal lost on the
integrator. Note also that the time derivative of

xðtÞ can also be expressed as

’xðtÞ ¼ ht1ðtÞ* ’x1ðtÞ ¼
1

t2
ht1 ðtÞ* ½x2ðtÞ � x1ðtÞ� ð9Þ

where t2 ¼ R2C2; and the choice between using
Eq. (7) or (9) should be governed by practical
considerations—for example, by the values of t1
and t2:

Eq. (8) gives an exact expression for the thresh-
old crossing rates in a moving window w: This
expression represents measurement of these rates
with an ideal probe8 having the response described
by the d-function. The presence of this singular
function is the second concern about practical
suitability of Eqs. (2) and (3), since the integrand
in Eq. (8) cannot be directly evaluated. We cannot
avoid evaluating the d-function of the threshold
argument in Eq. (8) by reverting to the time
argument, since then, as should be obvious from
Eq. (A.1), we would need to know the instances ti

of all threshold crossings, while the unavailability
of these instances prompted us to convert the
argument of the d-function from time to threshold
in the first place.

Fig. 1. Using an ideal discriminator for counting threshold crossings in the time interval 0ptpT :

8We find it convenient to use the term ‘probe’, instead of

‘differential discriminator’, for the threshold derivative of the

discriminator.
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It is important to realize, however, that this
difficulty is not inherent in our approach. Rather,
it is the result of the approximation we adopted
when considering the measurement process that
employs an ideal discriminator, capable of com-
parison with infinite precision. In practice, the
comparison of the signal with the threshold is
limited to a finite resolving power, and the only
measurable quantities are the weighted means over
non-zero intervals. Thus, a more realistic repre-
sentation of the probe would be in terms of a
continuous function fDDðDÞ; which represents a
real physical instrument [15]. Replacing the Dirac
d-function in Eq. (8) by a finite-width probe fDD

such that
R
N

�N
dD fDDðDÞ ¼ 1; we can re-write this

equation in a form suitable for practical imple-
mentation as

RðD; tÞ ¼
1

t
wðtÞ*fjx1ðtÞ � xðtÞjfDD½D � xðtÞ�g: ð10Þ

The exact shape of the function fDDðDÞ in Eq. (10)
will depend on the properties of the acquisition
system, but will typically have a pronounced
maximum around D ¼ 0 and decay to zero as
jDj-N: An obvious physical meaning of the
width parameter DD of the probe is the amplitude

resolution of a pulse-height analyzing system
employing rate counting according to Eq. (10).
Another illustrative interpretation of the width
parameter DD can be given in terms of fractional,
or partial, counts as follows. A full count is
registered when the signal xðtÞ completely crosses
the 7DD vicinity of the threshold D: A partial

count is registered when the signal crosses only a

fraction of the 7DD vicinity of D: Note that such
an interpretation most closely corresponds to
counting with a boxcar probe (test function)
fDDðDÞ ¼ ð1=2DDÞ½yðD þ DDÞ � yðD � DDÞ�; even
though different types of test functions follow this
interpretation in a ‘fuzzy’ fashion. Regardless of
the shape of the test function, however, the partial
counts become the exact counts in the limit
DD-0:

Fig. 3 illustrates two typical situations leading to
partial counts (single local extrema and riding
waves), and the results of counting the crossings in
these situations with boxcar and Gaussian test
functions. In this figure, the number of crossings is
equal to the shaded areas under the instantaneous
rate curves j ’xj fDDðD � xÞ: Notice that, for the
counts in the vicinity of an extremum, instead of a
‘jump’ from zero to two counts, the number of
counts changes monotonically from zero to two
over a range of threshold values of order DD: This
can be interpreted simply as a consequence of an
uncertainty in determining the exact value of the
signal at its extremum. Likewise, for the counts in
the vicinity of a single riding wave, the number of
counts changes monotonically from one to three
over a similar range of threshold values.

A more accurate representation of real counting
measurements is the main advantage of using
finite-width probes for mathematical description
of the counting process, which leads to a variety of
efficient approaches to these measurements. In
addition, employing finite-width probes for count-
ing threshold crossings also allows significant
reduction of uncertainty in counts caused by the

Fig. 2. Obtaining time derivatives of the output signal xðtÞ as the real-time difference between intermediate signals.
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presence of noise, especially for ‘slow’ crossings
(that is, when the absolute value of the signal’s
derivative at the threshold is small). Indeed, a
device implementing Eq. (10) will measure the
counting rates as the weighted threshold averages
with the test function fDD: Thus, distortions of the
signal caused by fluctuations (such as, for example,
the thermal noise) much smaller than DD will not
significantly affect the measured rates.

It is important to note that when a continuous

probe is employed for counting measurements, the
counts are no longer registered as individual
events, but rather as a continuum. Indeed, when
both functions wðtÞ and fDDðDÞ in Eq. (10) are
continuous, the rate RðD; tÞ itself is a continuous
function of both time and threshold. Thus,
Eq. (10) can be interpreted as an analog signal-

to-rate converter. In other words, given a contin-
uous input signal xðtÞ; and a threshold D; a device
implementing this equation outputs a continuous
signal of the instantaneous magnitude equal to the
rate of crossings of the input signal with the
threshold.

One of many advantages of an analog rather
than digital representation of the counting rates is
that such an analog signal can be easily used as
feedback in various control systems. For example,
it can be used for adaptation of the parameters of
the acquisition system (such as the width para-
meter of the probe DD and/or the duration of the
time weighting function w) for the optimal
compromise between the amplitude and the time
resolution. For instance, it might be desirable to
increase the width of wðtÞ in the case of low

Fig. 3. Illustration of two typical situations leading to partial counts and the results of counting the crossings in these situations with

boxcar and Gaussian test functions.
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counting rates so that the total number of counts
within this window remains large. This would
allow significant reduction of the statistical un-
certainty in the measurements. If a digital record
of the counting rates is desired (e.g., for storage or
numerical output), it can simply be obtained by
sampling RðD; tÞ; that is, through a standard
analog-to-digital converter.

Fig. 4 provides an example of employing
Eq. (10) for measuring the rates of crossings of
the signal xðtÞ with the threshold D: The signal
represents a pulse train (such as, for instance, a
train of charged particles) registered by a detector

with a time impulse response hðtÞ of a so-called
doubly differentiated pulse, of a shape shown in
Fig. 2 as xðtÞ: Panels 1a and b show the signal
(solid lines), the threshold (horizontal dashed
lines), and the width parameter DD of the probe
(ticks on the vertical axes, e.g., the left-hand side
axis in Panel 1b). The time ticks indicate the
instances of the crossings in the exact sense. Panels
2a and b show the instantaneous rates computed
as the expression in the curly brackets of Eq. (10).
Now each crossing results in a peak in the
instantaneous rates. Note that even though
the modal heights of these peaks are different,

Fig. 4. Example of employing Eq. (10) for measuring the rates of crossings of the signal xðtÞ with the threshold D:
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the integral intensities of the peaks (that is, the
areas under them) are unity. Thus time averaging
of the instantaneous rates with some moving
window w will result in the crossing rates within
this window. Panel 3 displays the counting rates
averaged with a boxcar moving window of width
T : The solid line plots the rate measured through
Eq. (10), and the dots correspond to the ‘exact’
counting rate (Eq. (8)).

2.1. Rate measurements with ‘slow’ discriminators:

dead time

In our treatment of threshold crossing measure-
ments we have assumed that the main ‘imperfec-
tion’ of a real discriminator was due to its finite
amplitude rather than time resolution. That is, we
have assumed that a discriminator has negligible
inertia and changes its state between ‘0’ and ‘1’
immediately upon its argument inverting the sign.
However, the finite time response of a discrimi-
nator might be a dominating factor in some real-
life devices. Then the total response of a discrimi-
nator might be modeled as a convolution of its
time impulse response hðtÞ with the response of an
ideal discriminator y½D � xðtÞ�; and measuring
threshold crossing rates with such an ‘accurate

but slow’ discriminator can be represented as

RðD; tÞ ¼wðtÞ*
@

@t
fhðtÞ*y½D � xðtÞ�g

����
����

¼wðtÞ* j ’hðtÞ*y½D � xðtÞ�j: ð11Þ

For instance, if the discriminator’s time response is
due to a single RC-integrator, hðtÞ ¼ htðtÞ (see
Eq. (5)), then Eq. (11) becomes

RðD; tÞ ¼
1

t
wðtÞ* jy½D � xðtÞ�

� htðtÞ*y½D � xðtÞ�j: ð12Þ

Fig. 5 illustrates counting threshold crossings with
such a discriminator in comparison with the
counting by an ideal discriminator shown in Fig. 1.

Fig. 6 provides an example of measuring the
rates of crossings of the signal xðtÞ with the
threshold D by a slow discriminator with the
exponential time impulse response htðtÞ; according
to Eq. (12). Panels 1a and b are equivalent to those
shown in Fig. 4. Panels 2a and b show the
instantaneous crossing rates computed as the
absolute value of the time derivative of the output
of the discriminator htðtÞ*y½D � xðtÞ�: A single

crossing leads to an exponentially decaying pulse
of unit area in the instantaneous rates. As follows
from the triangle inequality, however, the total

Fig. 5. Counting threshold crossings in the time interval 0ptpT by a ‘slow’ discriminator with an exponential time response htðtÞ
(compare with Fig. 1).

A.V. Nikitin et al. / Nuclear Instruments and Methods in Physics Research A 496 (2003) 465–480472



area under a sequence of such pulses is smaller
than the number of crossings. Thus, a finite time
resolution of the discriminator effectively results in
the dead time, which leads to the loss of counts as
illustrated in Panel 3. In this panel, the solid line
plots the rate measured according to Eq. (12), and
the dots correspond to the ‘exact’ counting rate
given by Eq. (8).

Counting with slow discriminators leads not
only to lost counts due to dead time, but also
prevents us from extending the formalism of this

section to the conditional and vector rate measure-
ments described in Section 4. Thus it will not be
further discussed in this article.

3. Time averaging with a continuous kernel

In the example of Fig. 4 we used a boxcar
moving window for time averaging of the instan-
taneous rates. This boxcar weighting function was
used only for the ease of interpretation and for

Fig. 6. Example of measuring the rates of crossings of the signal xðtÞ with the threshold D by a slow discriminator with the exponential

time impulse response htðtÞ:

A.V. Nikitin et al. / Nuclear Instruments and Methods in Physics Research A 496 (2003) 465–480 473



comparison with the ‘simple’ rate (number of
events per time interval). In reality, Eq. (10)
represents measurement of counting rates using
time averaging with the actual time impulse
response wðtÞ of the instrument, whatever this
response happens to be. Thus, even though detailed
analysis of the weighted time averaging is beyond the
scope of this article and some readers might find it
trivial, some brief discussion of counting with a non-
rectangular window is in order.

Although there is effectively no difference
between averaging window functions which rise
from zero to a peak and then fall again, boxcar
averaging is deeply engraved in modern engineer-
ing, partially due to the ease of interpretation and
numerical computations. Thus, one of the require-
ments for counting with a non-boxcar window is
that the results of such measurements are compar-
able with boxcar counting.

As an example, let us consider averaging of the
instantaneous rates shown in Panel 2a of Fig. 4 by
a sequence of n RC-integrators. For simplicity, let
us assume that these integrators have identical
time constants t ¼ RC; and thus their combined
impulse response is

wnðtÞ ¼
tn�1

ðn � 1Þ!tn
e�t=tyðtÞ: ð13Þ

Comparability with a boxcar function of width T

can be achieved by equating the first two moments
of the respective weighting functions. Thus, a
sequence of n RC-integrators with identical time
constants t ¼ 1

2
T=

ffiffiffiffiffi
3n

p
will provide us with rate

measurements corresponding to the time averaging
with a rectangular moving window of width T :9

Fig. 7 compares the rates measured with the
boxcar (thin solid line) and the ‘triple-integrator’ test
function (n ¼ 3 in Eq. (13), thick line) with t ¼ T=6:
The respective test functions are shown in the upper
left corner of the figure. The gray band in the figure
outlines the error interval in the rate measurements as
the square root of the total number of counts in the
time interval T per this interval.

One of the obvious shortcomings of boxcar
averaging is that it does not allow meaningful
differentiation of counting rates, while knowledge
of time derivatives of the event occurrence rate is
important for all physical models where such rate
is a time-dependent parameter. Indeed, the time
derivative of the rate measured with a boxcar
function of width T is simply T�1 times the
difference between the ‘original’ instantaneous
pulse train and this pulse train delayed by T ; and
such representation of the rate derivative hardly
provides physical insights. On the other hand, the
time derivative of the ‘cascaded integrators’
weighting function wn given by Eq. (13) is the
bipolar pulse ’wn ¼ t�1ðwn�1 � wnÞ; and thus the
time derivative of the rate evaluated with wnðtÞ is a
measure of the ‘disbalance’ of the rates within the
moving window (positive for a ‘front-loaded’
sample, and negative otherwise).

4. Measuring conditional rates and crossing rates

for vector signals

It is often desirable to measure the counting
rates satisfying a certain condition. For example,
Eq. (3) computes the upward and downward
threshold crossing rates, separately, by imposing
the condition on the sign of the first time derivative
of the signal at the intersection with the threshold.
Such conditional rates are best considered through
an extension to crossing rates of multicomponent
(vector) signals.

Let us generalize the definition of threshold
crossing rates for such multicomponent signals.
For instance, a signal can be a two-dimensional
vector composed of the original signal and its first
time derivative. Then, for example, we can impose
a condition on the rates by counting only the
crossings at a certain speed (slope). That is, we
want to measure the rate of crossings of x ¼ ðx; ’xÞ
with the threshold D ¼ ðDx;D ’xÞ: The expression
for such a rate can be written as

RðDx;D ’x; tÞ ¼ w* ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ’x DD ’xÞ

2 þ ð .x DDxÞ
2

q

� fDDf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðDx � xÞ DD ’x�2 þ ½ðD ’x � ’xÞ DDx�2

q
gÞ

ð14Þ

9Of course, one can design different criteria for equivalence

of the boxcar weighting function and wðtÞ: In our example we

were simply looking for the width parameter of wðtÞ which

would allow us to interpret the rate measurements with this

function as ‘a number of events per time interval T ’.
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where the width parameter of the probe is DD ¼
DDx DD ’x: Obviously, an important special case
D ’x ¼ 0 is the rate of occurrence of stationary points
(both extrema and inflection points) at the threshold
D; and the rates of occurrence of maxima ðþÞ and
minima ð�Þ; separately, are obtained by employing
the factor yð8 .xÞ in the right-hand side of Eq. (14),
in a manner similar to Eq. (3).

The derivatives of the signal can be obtained by
traditional techniques—for example, by means of
RC differentiators or delay lines. In most instances,
however, these derivatives can be evaluated without
unnecessary modification of the signal in a fashion
described in Section 2. For instance, assume that xðtÞ
is a result of passing some signal from a sensor
through an acquisition system with linear response,
and that two components of this system have
transient characteristics well described by Ht ¼
yðtÞð1� e�t=tÞ: Each element with the transient
characteristic Ht allows us to express the time
derivative ’xðtÞ of the signal through a simple
difference between xðtÞ and the signal x1ðtÞ acquired
without this element in the acquisition system (i.e.,
x1ðtÞ bypasses this element in the system).

For example, the relationship among the three
signals xðtÞ; x1ðtÞ; and x2ðtÞ in the circuit shown in
Fig. 2 is

xðtÞ ¼ ht1 ðtÞ*x1ðtÞ ¼ ht1ðtÞ*ht2ðtÞ*x2ðtÞ: ð15Þ

Then, employing Eq. (6), the first and second time
derivatives of the signal xðtÞ can be written as

’xðtÞ ¼
1

t1
½x1ðtÞ � xðtÞ� ð16Þ

and

.xðtÞ ¼
1

t1t2
½x2ðtÞ � 2x1ðtÞ þ xðtÞ� ð17Þ

respectively. Thus, a typical signal amplifier can
output the signal along with its first two time
derivatives, and Eqs. (16) and (17) can be utilized
for a practical implementation of Eq. (14).

Fig. 8 illustrates usage of Eq. (14) for counting
stationary points in a signal. Panel (a) of the figure
shows the fragment of the signal in the interval
½0;T �: The thresholds at which the stationary
points occur are shown by the dashed lines. Panel
(b) of the figure shows the number of stationary
points in this time interval, as a function of
threshold, computed according to Eq. (14). Note
that the fragment of the signal shown contains
‘incomplete’ crossings of the threshold D ¼ ð0; 0Þ;
and thus the total number of counts at Dx ¼ 0 is
7:5 stationary points.

The relation of the mathematical formalism
expressed by Eq. (14) to real physical devices
might be somewhat obscure. In order to illustrate
such a relation, let us employ a conventional

Fig. 7. Comparison of the rates measured with the boxcar (thin solid line) and the ‘triple-integrator’ test function (n ¼ 3 in Eq. (13),

thick line) with t ¼ T=6: The respective test functions are shown in the upper left corner of the figure.
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analog oscilloscope for measuring the (time-
dependent) rates of occurrence of stationary points
in some signal xðtÞ: As shown in Fig. 9, a voltage
proportional to xðtÞ is fed to the horizontal
deflecting plates, and a voltage proportional to

’xðtÞ to the vertical plates. When both X and Y

inputs are constant, the electron beam produces a
static spot on the screen. In all real oscilloscopes,
this spot would have a finite size, and its shape and
brightness can be adjusted. Without loss of
generality, we can assume that the brightness of
the spot is uniform, and it is an ellipse with the
semiaxes DDx and DD ’x: If we modulate the
intensity of the electron beam by

ZðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ’x DD ’xÞ

2 þ ð .x DDxÞ
2

q
; then the brightness

of the projected spot will be proportional to the
speed of the movement of this spot across the screen.
If the afterglow half-time of the screen’s luminophor
is T1=2 ¼ t ln 2; then the brightness of the displayed
picture on the screen at ðDx;D ’xÞ will be described by
RðDx;D ’x; tÞ given by Eq. (14), where

fDDðyÞ ¼
1

p DDx DD ’x

� ½yðy þ DDx DD ’xÞ � yðy � DDx DD ’xÞ�

ð18Þ

and the time averaging window is wðtÞ ¼ htðtÞ; t ¼
T1=2=ln 2: By measuring the brightness at the

horizontal axis D ’x ¼ 0; we will effectively measure
the rate of occurrence of the stationary points of
xðtÞ: As can be seen from Fig. 9, this brightness
corresponds to the counts measured in the
example of Fig. 8(b).

A large variety of signal characteristics can be
described in a manner similar to Eqs. (10) and
(14). For example, the density of maxima in a
signal can be written as

fþðD; tÞ ¼
wðtÞ*fKðtÞfDDx

½D � xðtÞ�g
wðtÞ*KðtÞ

ð19Þ

where

KðtÞ ¼ .xðtÞy½� .xðtÞ�fDD ’x
½� ’xðtÞ� ð20Þ

and a stationary inflection point is counted as a
half of a maximum.10 Obviously, Eq. (19) thus
describes a pulse-height analyzer. Panel (c) of Fig. 8
shows the density of maxima, computed using
Eq. (19), for the signal shown in Panel (a).

To conclude this section, let us point out that
the threshold density given by Eq. (19) can be

Fig. 8. Counting stationary points and maxima in a signal by means of Eqs. (14) and (19). Panel (a): Fragment of the signal in the

interval ½0;T �: Panel (b): Number of stationary points as a function of threshold. Panel (c): Density of maxima.

10Note that Eq. (19) with KðtÞ given by Eq. (20) expresses the

fraction of the total number of maxima at threshold D per

(infinitesimally small) threshold interval dD; and thus it is the

density of maxima. Indeed, the numerator of Eq. (19) is the

number of maxima at D per interval dD: The denominator, on

the other hand, is just the total number of maxima since it is the

integral of the numerator over all thresholds.
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viewed as a particular appearance of a general
modulated threshold density

fðD; tÞ ¼
wðtÞ*fKðtÞfDD½D � xðtÞ�g

wðtÞ*KðtÞ
ð21Þ

where KðtÞ is a unipolar modulating signal. Various
choices of the modulating signal allow us to
introduce different types of threshold densities
and impose different conditions on these densities.
For example, the simple amplitude density is given
by the choice KðtÞ ¼ const:; and setting KðtÞ ¼
j ’xðtÞj leads to the counting density.

5. Conclusion

Physical measurements often require characteriza-
tion of rates of occurrence of various coincidence
events—for example, instances of crossings of a
signal with a given threshold, or occurrence of
extrema of a certain amplitude. The approach

described in this paper enables simple and efficient
implementation of various counting systems in
robust analog devices, which we call multivariate

counting analyzers. The rates measured by such
counters can be simple or conditional rates for scalar
as well as for multicomponent (vector) signals. These
analyzers can be easily implemented in discrete or
integrated electronic circuits, do not suffer from dead
time effects, allow substantial reduction of pileup
effects, and have other significant advantages with
respect to the existing counting devices. For
example, in space applications the analog approach
has an outstanding advantage of the absence of any
requirement for software or firmware, which elim-
inates any potential for disaster caused by unfore-
seen ‘bugs’ in the code. The proposed counters
would be well suited for operation in autonomous
conditions such as mobile communication, space
missions, prosthetic devices, etc. In addition, the
analog output of these analyzers can be used as a
feedback signal in various control systems, e.g.

Fig. 9. Using conventional analog oscilloscope for counting stationary points in a signal.
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cardiac pacemakers. This feedback can also be used
for adaptation of the parameters of the acquisition
system for the optimal compromise between the
amplitude and the time resolution, and for reduction
of the effects caused by noise.

Let us use the example of a positive slope threshold

crossing counter to reiterate the main principles of
our approach to the counting problem. A simplified
schematic of such a counter is shown in Fig. 10.

In general terms, we can view a device accom-
plishing some particular signal processing task as a
sequence of (linear) time filters and threshold

filters. These filters are connected in such a fashion
that their inputs and outputs can be represented by
algebraic expressions comprising these inputs and
outputs. For example, the input of the second
(averaging) time filter in Fig. 10, t ’xyð ’xÞfDDðD � xÞ;
is the product of the threshold-filtered first output
of the first time filter (the signal xðtÞ) and the
positive value of the difference between the second
ð *xÞ and first ðxÞ outputs of the first time filter,
ð *x � xÞyð *x � xÞ: The output of the second time
filter tRþ then represents t times the rate of
upcrossings of the threshold D by the signal xðtÞ in
the moving time window w (i.e., RþðD; tÞ ¼
wðtÞ*f ’xðtÞ y½ ’xðtÞ�fDD½D � xðtÞ�g).

Knowledge of various derivatives of the event
occurrence rate is important for all physical

models where such rate is a variable. Since in the
counting analyzers described in this article both
the time and threshold averaging of the instanta-
neous rates are performed by continuous kernels,
these analyzers enable meaningful direct measure-
ments of such derivatives. Thus continuous rates
and densities can enter partial differential equa-
tions used in various control systems.

The analyzers described here also enable direct
measurements of multivariate distributions, i.e.,
distributions in which the threshold argument is a
vector. For example, an energy-pitch angle dis-
tribution of charged particles in the Earth magne-
tosphere can be directly measured by an
instrument on board a spacecraft, without the
necessity of complicated ground data analysis.

Further advantages of the analog method
described above include the capability to extend
the dynamic range in counting rate of event
detecting systems. For example, a wide dynamic
range is essential for space radiation measure-
ments, where instruments are often carried
through radiation environments that vary by many
orders of magnitude in intensity—factors of a
billion are typical [16–19]. Signals resulting from
sensors exposed to such environments have
complicated variations related to the frequencies
and sizes of events. The process of achieving the

Fig. 10. Simplified schematic of a positive slope threshold crossing counter.
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goals of measurement and observation, namely,
determining the frequencies and event sizes, is
highly constrained by the available mass, power,
volume, and information transmission bandwidth.
From the limited amounts of mass, power, volume,
and information rate, claims for various instruments
must be met. The approach to measurements
described here has the ability to improve significantly
over digital counting—specifically to be simpler,
lighter, smaller, less expensive, more robust and
accurate—has a larger dynamic range of event
amplitudes and frequencies for given instrument
power, and to be more adaptable. Since break-
throughs often occur when measurements and
observations are made more sensitive, robust, and
capable, further exploration and exploitation of the
analog counting is likely to be important.
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Appendix A. Formal expression for threshold cross-

ing rates

Let us demonstrate that Eq. (1) indeed expresses
the rate of crossings of the threshold D by a
continuous signal xðtÞ in the time interval 0ptpT :
This equation can be re-written in an extended
form as

TRðDÞ ¼
Z T

0

dtj ’xðtÞjd½D � xðtÞ�

¼
Z T

0

dtj ’xðtÞj
X

i

dðt � tiÞ
j ’xðtiÞj

¼
Z T

0

dt
X

i

j ’xðtiÞj dðt � tiÞ
j ’xðtiÞj

¼
X

i

Z T

0

dtdðt � tiÞ ðA:1Þ

where the sum goes over all ti such that xðtiÞ ¼ D:
Thus TRðDÞ is the total number of crossings in the
time interval 0ptpT and RðDÞ is the rate of such
crossings.

In Eq. (A.1) we have used the following
property of the Dirac d-function (see [20, p. 610,
Eq. (A15)], for example):

d½a � f ðxÞ� ¼
X

i

dðx � xiÞ
jf 0ðxiÞj

ðA:2Þ

where jf 0ðxiÞj is the absolute value of the derivative
of f ðxÞ at xi; and the sum goes over all xi such that
f ðxiÞ ¼ a: We have also used the fact that (see [14,
p. 60, Eq. (11)], for example)

f ðxÞdðx � aÞ ¼ f ðaÞdðx � aÞ: ðA:3Þ
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