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(57) ABSTRACT

Various components of the present invention are collectively
designated as Adaptive Real-Time Embodiments for Multi-
variate Investigation of Signals (ARTEMIS). It is a method,
processes, and apparatus for measurement and analysis of
variables of different type and origin. In this invention, dif-
ferent features of a variable can be quantified either locally as
individual events, or on an arbitrary spatio-temporal scale as
scalar fields in properly chosen threshold space. The method
proposed herein overcomes limitations of the prior art by
directly processing the data in real-time in the analog domain,
identifying the events of interest so that continuous digitiza-
tion and digital processing is not required, performing direct,
noise-resistant measurements of salient signal characteris-
tics, and outputting a signal proportional to these character-
istics that can be digitized without the need for high-speed
front-end sampling. The application areas of ARTEMIS are
numerous, e.g., it can be used for adaptive content-sentient
real-time signal conditioning, processing, analysis, quantifi-
cation, comparison, and control, and for detection, quantifi-
cation, and prediction of changes in signals, and can be
deployed in automatic and autonomous measurement, infor-
mation, and control systems. ARTEMIS can be implemented
through various physical means in continuous action
machines as well as through digital means or computer cal-
culations. Particular embodiments of the invention include

GO6G 7/02 (2006.01) various analog as well as digital devices, computer programs,
G06G 7/00 (2006.01) and simulation tools.
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METHOD AND APPARATUS FOR ADAPTIVE
REAL-TIME SIGNAL CONDITIONING,
PROCESSING, ANALYSIS,
QUANTIFICATION, COMPARISON, AND
CONTROL

[0001] This is a continuation-in-part of U.S. patent appli-
cation Ser. No. 10/679,164. The present application relates to
and claims priority with regard to all common subject matter
of'the provisional patent application No. 60/416,562, filed on
Oct. 7, 2002, which is hereby incorporated into the present
application by reference.

COPYRIGHT NOTIFICATION

[0002] Portions of this patent application contain materials
that are subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

TECHNICAL FIELD

[0003] The present invention relates to methods, processes
and apparatus for real-time measuring and analysis of vari-
ables. In particular, it relates to adaptive real-time signal
conditioning, processing, analysis, quantification, compari-
son, and control. This invention also relates to generic mea-
surement systems and processes, that is, the proposed mea-
suring arrangements are not specially adapted for any specific
variables, or to one particular environment. This invention
also relates to methods and corresponding apparatus for mea-
suring which extend to different applications and provide
results other than instantaneous values of variables. The
invention further relates to post-processing analysis of mea-
sured variables and to statistical analysis.

BACKGROUND ART

[0004] Due to the rapid development of digital technology
since the 1950’s, the development of analog devices has been
essentially squeezed out to the periphery of data acquisition
equipment only. It could be argued that the conversion to
digital technology is justified by the flexibility, universality,
and low cost of modern integrated circuits. However, it usu-
ally comes at the price of high complexity of both hardware
and software implementations. The added complexity of digi-
tal devices stems from the fact that all operations must be
reduced to the elemental manipulation of binary quantities
using primitive logic gates. Therefore, even such basic opera-
tions as integration and differentiation of functions require a
very large number of such gates and/or sequential processing
of discrete numbers representing the function sampled at
many points. The necessity to perform a very large number of
elemental operations limits the ability of digital systems to
operate in real time and often leads to substantial dead time in
the instruments. On the other hand, the same operations can
be performed instantly in an analog device by passing the
signal representing the function through a simple RC circuit.
Further, all digital operations require external power input,
while many operations in analog devices can be performed by
passive components. Thus analog devices usually consume
much less energy, and are more suitable for operation in

Oct. 15, 2009

autonomous conditions, such as mobile communication,
space missions, prosthetic devices, etc.

[0005] It is widely recognized (see, for example, Paul and
Hiiper (1993)) that the main obstacle to robust and efficient
analog systems often lies in the lack of appropriate analog
definitions and the absence of differential equations corre-
sponding to known digital operations. When proper defini-
tions and differential equations are available, analog devices
routinely outperform corresponding digital systems, espe-
cially in nonlinear signal processing (Paul and Hiiper, 1993).
However, there are many signal processing tasks for which
digital algorithms are well known, but corresponding analog
operations are hard to reproduce. One example, which is
widely recognized to fall within this category, is related to the
use of signal processing techniques based on order statistics*.
! See, for example, Arnold et al. (1992) for the definitions and theory of order
statistics.

[0006] Order statistic (or rank) filters are gaining wide rec-
ognition for their ability to provide robust estimates of signal
properties and are becoming the filters of choice for applica-
tions ranging from epileptic seizure detection (Osorio et al.,
1998) to image processing (Kim and Yaroslavsky, 1986).
However, since such filters work by sorting, or ordering, a set
of measurements their implementation has been constrained
to the digital domain. As pointed out by some authors (Paul
and Hiiper, 1993, for example), the major problem in analog
rank processing is the lack of an appropriate differential equa-
tion for ‘analog sorting’. There have been several attempts to
implement such sorting and to build continuous-time rank
filters without using delay lines and/or clock circuits.
Examples of these efforts include optical rank filters (Ochoa
etal., 1987), analog sorting networks (Paul and Hiiper, 1993;
Opris, 1996), and analog rank selectors based on minimiza-
tion of a non-linear objective function (Urahama and Nagao,
1995). However, the term ‘analog’ is often perceived as only
‘continuous-time’, and thus these efforts fall short of consid-
ering the threshold continuity, which is necessary for a truly
analog representation of differential sorting operators. Even
though Ferreira (2000, 2001) extensively discusses threshold
distributions, these distributions are only piecewise-continu-
ous and thus do not allow straightforward introduction of
differential operations with respect to threshold.

[0007] Nevertheless, fuelled by the need for robust filters
that can operate in real time and on a low energy budget,
analog implementation of traditionally digital operations has
recently gained in popularity aided by the rapid progress in
analog Very Large Scale Integration (VLSI) technology
(Mead, 1989; Murthy and Swamy, 1992; Kinget and Steyaert,
1997; Lee and Jen, 1993). However, current efforts to imple-
ment digital signal processing methods in analog devices still
employ an essentially digital philosophy. That is, a continu-
ous signal is passed through a delay line which samples the
signal at discrete time intervals. Then the individual samples
are processed by a cascade of analog devices that mimic
elemental digital operations (Vlassis et al., 2000). Such an
approach fails to exploit the main strength of analog process-
ing, which is the ability to perform complex operations in a
single step without employing the ‘divide and conquer’ para-
digm of the digital approach.

[0008] Perhaps the most common digital waveform device
is the analog-to-digital converter (ADC). Among the salient
characteristics of ADCs are their sampling frequency, mea-
surement resolution, power dissipation, and system complex-
ity. Sampling frequency is typically dictated by the signal of
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interest and/or the requirements of the application. As the
frequency content of the signal of interest increases and the
sampling frequency increases, resolution decreases both in
terms of the absolute number of bits available in an ADC and
in terms of the effective number of bits (ENOB), or accuracy,
of the measurement. Power needs typically increase with
increasing sampling frequency. The system complexity is
increased if continuous monitoring of an input signal is
required (real-time operation). As an example, high-end
oscilloscopes can capture fast transient events, but are limited
by record length (the number of samples that can be acquired)
and dead time (the time required to process, store, or display
the samples and then reset for more data acquisition). These
limitations affect any data acquisition system in that, as the
sampling frequency increases, resources will ultimately be
limited at some point in the processing chain. In addition, the
higher the acquisition speed, the more negative effects such as
clock crosstalk, jitter, and synchronization issues combine to
reduce system performance.

[0009] Itis highly desirable to extract signal characteristics
or preprocess data prior to digitization so that the require-
ments on the ADCs are reduced and higher quality data can be
obtained. In the past, one common technique was to use an
analog memory to sample a fast signal and then the analog
memory would be clocked out at a low speed and digitized
with a moderately high resolution ADC. While this technique
works, it suffers from significant degradation due to clock
feedthrough, non-linear effects of the analog memories cho-
sen, and limited record length. Another technique used is to
multiplex a high-speed signal to a number of lower speed but
higher resolution ADCs using an interleaved clock. Again, the
technique works but never realizes the best performance of a
single channel due to the high clock noise and inevitable
differences in processing channels.

[0010] The introduction of the Analysis of VAriables
Through Analog Representation (AVATAR) methodology
(see Nikitin and Davidchack (2003a) and U.S. patent appli-
cation Ser. No. 09/921,524, which are incorporated herein by
reference in their entirety) is aimed to address many aspects
of modern data acquisition and signal processing tasks by
offering solutions that combine the benefits of both digital
and analog technology, without the drawbacks of high cost,
high complexity, high power consumption, and low reliabil-
ity. The AVATAR methodology is based on the development
of a new mathematical formalism, which takes into consid-
eration the limited precision and inertial properties of real
physical measurement systems. Using this formalism, many
problems of signal analysis can be expressed in a content-
sentient form suitable for analog implementation. Specific
devices for a wide variety of signal processing tasks can be
built from a few universal processing units. Thus, unlike
traditional analog solutions, AVATAR offers a highly modular
approach to system design. Most practical applications of
AVATAR, however, are far from obvious, and their develop-
ment requires technical solutions unavailable in the prior art.
For example, AVATAR introduces the definitions of analog
filters and selectors. Nonetheless, the practical implementa-
tions of these filters offered by AVATAR are often unstable
and suffer from either lack of accuracy or lack of convergence
speed, and thus are unsuitable for real-time processing of
non-stationary signals. Another limitation of AVATAR lies in
the definition of the threshold filter. Namely, a threshold filter
in AVATAR depends only on the difference between the dis-
placement and the input variables, and is expressed as a scalar
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function of only the displacement variable, which limits the
scope of applicability of AVATAR. As another example, the
analog counting in AVATAR is introduced through modulated
density, and thus the instantaneous counting rate is expressed
as a product of a rectified time derivative of the signal and the
output of a probe. Even though this definition theoretically
allows counting without dead time effect, its practical imple-
mentations are cumbersome and inefficient.

DISCLOSURE OF INVENTION
Brief Summary of the Invention

[0011] The present invention, collectively designated as
Adaptive Real-Time Embodiments for Multivariate Investi-
gation of Signals (ARTEMIS), overcomes the shortcomings
of the prior art by directly processing the data in real-time in
the analog domain, identifying the events of interest so that
continuous digitization and digital processing is not required,
performing direct, noise-resistant measurements of the
salient signal characteristics, and outputting a signal propor-
tional to these characteristics that can be digitized without the
need for high-speed front-end sampling.

[0012] Inthe face of the overwhelming popularity of digital
technology, simple analog designs are often overlooked. Yet
they often provide much cheaper, faster, and more efficient
solutions in applications ranging from mobile communica-
tion and medical instrumentation to counting detectors for
high-energy physics and space missions. The current inven-
tion, collectively designated as Adaptive Real-Time Embodi-
ments for Multivariate Investigation of Signals (ARTEMIS),
explores a new mathematical formalism for conducting adap-
tive content-sentient real-time signal processing, analysis,
quantification, comparison, and control, and for detection,
quantification, and prediction of changes in signals. The
method proposed herein overcomes the limitations of the
prior art by directly processing the data in real-time in the
analog domain, identifying the events of interest so that con-
tinuous digitization and digital processing is not required,
performing a direct measurement of the salient signal char-
acteristics such as energy and arrival rate, and outputting a
signal proportional to these characteristics that can be digi-
tized without the need for high-speed front-end sampling. In
addition, the analog systems can operate without clocks,
which reduces the noise introduced into the data.

[0013] A simplified diagram illustrating multimodal ana-
log real-time signal processing is shown in FIG. 1. The pro-
cess comprises the step of Threshold Domain Filtering in
combination with at least one of the following steps: (a)
Multimodal Pulse Shaping, (b) Analog Rank Filtering, and
(c) Analog Counting.

Threshold Domain Filtering is used for separation of the
features of interest in a signal from the rest of the signal. In
terms of a threshold domain, a ‘feature of interest’ is either a
point inside of the domain, or a point on the boundary of the
domain. A typical Threshold Domain Filter can be composed
of (asynchronous) comparators and switches, where the com-
parators operate on the differences between the components
of the incoming variable(s) and the corresponding compo-
nents of the control variable(s). For example, for the domain
defined as a product of two ideal comparators represented by
the Heaviside unit step function 6(x), 8=0[x(t)-D]0[x(1)]
(with two control levels, D and zero), a point inside (that is,
6=1) corresponds to a positive-slope signal of the magnitude



US 2009/0259709 Al

greater than D, and the stationary points of x(t) above the
threshold D can be associated with the points on the boundary
of this domain.

Multimodal Pulse Shaping can be used for embedding the
incoming signal into a threshold space and thus enabling
extraction of the features of interest by the Threshold Domain
Filtering. A typical Multimodal Pulse Shaper transforms at
least one component of the incoming signal into at least two
components such that one of these two components is a (par-
tial) derivative of the other. For example, for identification of
the signal features associated with the stationary points of a
signal x(t), the Multimodal Pulse Shaping is used to output
both the signal x(t) and its time derivative X(t).

Analog Rank Filtering can be used for establishing and main-
taining the analog control levels of the Threshold Domain
Filtering. It ensures the adaptivity of the Threshold Domain
Filtering to changes in the measurement conditions, and thus
the optimal separation of the features of interest from the rest
of'the signal. For example, the threshold level D in the domain
0=0[x(1)-D]0[X(t)] can be established by means of Analog
Rank Filtering to separate the stationary points of interest
from those caused by noise. Note that the Analog Rank Fil-
tering outputs the control levels indicative of the salient prop-
erties of the input signal(s), and thus can be used as a stand-
alone embodiment of ARTEMIS for adaptive real-time signal
conditioning, processing, analysis, quantification, compari-
son, and control, and for detection, quantification, and pre-
diction of changes in signals.

Analog Counting can be used for identification and quantifi-
cation of the crossings of the threshold domain boundaries,
and its output(s) can be either the instantaneous rate(s) of
these crossings, or the rate(s) in moving window of time. A
typical Analog Counter consists of a time-differentiator fol-
lowed by a rectifier, and an optional time-integrator.

[0014] Further scope of the applicability of the invention
will be clarified through the detailed description given here-
inafter. It should be understood, however, that the specific
examples, while indicating preferred embodiments of the
invention, are presented for illustration only. Various changes
and modifications within the spirit and scope of the invention
should become apparent to those skilled in the art from this
detailed description. Furthermore, all the mathematical
expressions and the examples of hardware implementations
are used only as a descriptive language to convey the inven-
tive ideas clearly, and are not limitative of the claimed inven-
tion.

BRIEF DESCRIPTION OF FIGURES

[0015] FIG. 1. Simplified diagram of a multimodal analog
system for real-time signal processing.

[0016] FIG. 2. Representative step (a) and impulse (b)
responses of a continuous comparator.

[0017] FIG. 3. Defining output D,(t) of a rank filter as a
level curve of the distribution function ®(D, t).

[0018] FIG. 4. Amplitude and counting densities computed
for the fragment of a signal shown at the top of the figure.
[0019] FIG. 5. Comparison of the rates measured with the
boxcar (thin solid line) and the ‘triple-integrator’ test function
(n=3 in equation (14), thick line) with t=T/6. The respective
test functions are shown in the upper left corner of the figure.
[0020] FIG. 6. [lustration of bimodal pulse shaping used
for the amplitude and timing measurements of a short-dura-
tion event.
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[0021] FIG. 7. A simplified principal schematic of a signal
processing system for a two-detector particle telescope.
[0022] FIG. 8. Example of analog measurement of instan-
taneous rate of signal’s extrema.

[0023] FIG. 9. Example of analog counting of coincident
maxima.
[0024] FIG. 10. Coincident counting in a time-of-flight

window: (a) ‘Ideal” instrument; (b) ‘Realistic’ instrument.
[0025] FIG. 11. Principle schematic of implementation of
an adaptive real-time rank filter given by equation (24).
[0026] FIG. 12. Simplified diagram of an Adaptive Analog
Rank Filter (AARF).

[0027] FIG. 13. Principle schematic of a 3-comparator
implementation of AARF.

[0028] FIG. 14. Principle schematic of a delayed compara-
tor.

[0029] FIG. 15. Principle schematic of an averaging com-
parator.

[0030] FIG. 16. Comparison of the performance of the ana-

log rank filter given by equation (24) to that of the ‘exact’
quantile filter in a boxcar moving window of width T.
[0031] FIG. 17. Example of using an internal reference
(baseline) for separating signal from noise.

[0032] FIG. 18. Principle schematic of establishing base-
line by means of quartile (trimean) filter.

[0033] FIG. 19. Principle schematic of implementation of
an adaptive real-time rank selector given by equation (28).
[0034] FIG. 20. Simplified diagram of an Adaptive Analog
Rank Selector (AARS).

[0035] FIG. 21. Removing static and dynamic impulse
noise from a monochrome image by AARSs.

[0036] FIG. 22. Comparison of quartile outputs (q=Y4, %2,
and ¥4) of ARF and EARL for amplitudes and counts.
[0037] FIG. 23. Simplified principle schematic of a Bimo-
dal Analog Sensor Interface System (BASIS).

[0038] FIG. 24. Simplified principle schematic of an Inte-
grated Output Module of BASIS.

[0039] FIG. 25. Simulated example of the performance of
BASIS used with a PMT.

[0040] FIG. 26. Modification of BASIS used for detection
of onsets/offsets of light pulses.

[0041] FIG. 27. Principle schematic of a monoenergetic
Poisson pulse generator.

[0042] FIG. 28 Simulated performance of a monoenergetic
Poisson pulse generator.

[0043] FIG. 29. Principle schematic of implementation of
an adaptive real-time rank filter given by equation (61).
[0044] FIG. 30. Generalized diagram of a modified adap-
tive analog rank filter (AARF).

[0045] FIG. 31. Generalized diagram of a modified adap-
tive analog rank selector (AARS).

[0046] FIG. 32. Attenuation of a purely harmonic signal by
boxcar and exponential median filters.

[0047] FIG. 33. Examples of time windows with coinciding
mean and median: (a) Values of a as a function of N; (b) Time
windows w(t) with

aT

=TS N T
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for minimum values of a; (¢) Time windows w(t) with

aT

=0T N T

for maximum values of o.

[0048] FIG. 34. Simplified schematic of single-delay
implementation of median filter.

[0049] FIG. 35. Attenuation and phase sift of a purely har-
monic signal filtered by a single-delay median circuit.
[0050] FIG.36. Inputs and outputs of a single-delay median
filter for several different frequencies.

[0051] FIG. 37. Nonlinear distortions of harmonic signal
by a single-delay median filter.

[0052] FIG. 38. Noise suppression efficiency of a single-
delay median filter.

[0053] FIG. 39. [lustration of using AMF for noise sup-
pression in multicarrier signals.

[0054] FIG. 40. Attenuation of a purely harmonic signal by
median comb filters.

[0055] FIG. 41. Tlustration of using AMCF for noise sup-
pression in a single carrier signal.

[0056] FIG. 42. Illustration of real-time filtering of a
CMOS signal by an AQCF.

[0057] FIG. 43. Generalized diagram of signal demodula-
tion in accordance with present invention.

[0058] FIG. 44. Example of typical signal demodulation in
the existing art.
[0059] FIG. 45. Example of signal demodulation in accor-

dance with present invention.

TERMS AND DEFINITIONS WITH
ILLUSTRATIVE EXAMPLES

[0060] For convenience, the essential terms used in the
subsequent detailed description of the invention are provided
below, along with their definitions adopted for the purpose of
this disclosure. Some examples clarifying and illustrating the
meaning of the definitions are also provided. Note that the
sections and equations in this part are numbered separately
from the rest of the disclosure. Additional explanatory infor-
mation on relevant terms and definitions can be found in U.S.
patent application Ser. No. 09/921,524 and U.S. Provisional
Patent Application No. 60/416,562, which are incorporated
herein by reference in their entirety. Some other terms and
their definitions which might appear in this disclosure will be
provided in the detailed description of the invention.

D-1 Continuous Comparators and Probes

[0061] Consider a simple measurement process whereby a
signal x(t) is compared to a threshold value D. The ideal
measuring device would return ‘0’ or ‘1’ depending on
whether x(t) is larger or smaller than D. The output of such a
device is represented by the Heaviside unit step function
0] D-x(1)], which is discontinuous at zero. However, the finite
precision of real measurements inevitably introduces uncer-
tainty in the output whenever x(t)=D. To describe this prop-
erty of a real measuring device, we represent its output by a
continuous function f, ,[D-x(t)], where the width parameter
AD characterizes the threshold interval over which the func-
tion changes from ‘0’ to 1’ and, therefore, reflects the mea-
surement precision level. We call f, (D) the threshold step
response of a continuous comparator. Because of the conti-
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nuity of this function, its derivative f, ,(D)=df,,/dD exists
everywhere, and we call it the comparator’s threshold
impulse response, or a probe (Nikitin et al., 2003; Nikitin and
Davidchack, 2003a,b). This threshold continuity of the output
of'a comparator is the key to a truly analog representation of
such a measurement. Examples of step and impulse responses
of a continuous comparator are shown in FIG. 2. We further
assume, for simplicity, that the probe is a unimodal even
function, that is, f, (D) has only a single maximum and
fAp(D)=fap(-D).

[0062] In practice, many different circuits can serve as
comparators, since any continuous monotonic function with
constant unequal horizontal asymptotes will produce the
desired response under appropriate scaling and reflection. It
may be simpler to implement a comparator described by an
odd function # , ,, which relates to the response f, , as

jEAD:A(zfAD_l)a (D-1)

where A is an arbitrary (nonzero) constant. For example, the
voltage-current characteristic of a subthreshold transconduc-
tance amplifier (Mead, 1989; Urahama and Nagao, 1995) can
be described by the hyperbolic tangent function, £, ,=A tan
h(D/AD), and thus such an amplifier can serve as a continuous
comparator. For specificity, this response function is used in
the numerical examples of this disclosure. A practical imple-
mentation of the probe f, ,, corresponding to the comparator
f o can be conveniently accomplished as a finite difference

Fap(D+6D)—
Fap(D —6D)

Fa®D) _ 1 0-2)

JapD) = = Sh ™ = 3ash

5

where 9D is a relatively small fraction of AD.
[0063] Note that the terms ‘comparator’ and ‘discrimina-
tor’ might be used synonymously in this disclosure.

D-2 Analog Rank Filters (ARFs)

[0064] Consider the measuring process in which the differ-
ence between the threshold variable D and the scalar signal
x(t) is passed through a comparator f, ,, followed by a linear
time averaging filter with a continuous impulse response w(t).
The output of this system can be written as

DD, 1)=w(t)*f sp[D-*(1)], D-3)

where the asterisk denotes convolution. The physical inter-
pretation of the function ®(D, t) is the (time dependent)
cumulative distribution function of the signal x(t) in the mov-
ing time window w(t) (Nikitin and Davidchack, 2003b). In
the limit of high resolution (small AD), equation (D-3)
describes the ‘ideal’ distribution (Ferreira, 2001). Notice that
d(D, 1) is viewed as a function of two variables, threshold D
and time t, and is continuous in both variables.

[0065] The output of a quantile filter of order q in the
moving time window w(t) is then given by the function D, (t)
defined implicitly as

@[D,(1),4/=q, O<q<l. (D-4)

[0066] Viewing the function ®(D, t) as a surface in the
three-dimensional space (t, D, ®), we immediately have a
geometric interpretation of D (1) as that of'a level (or contour)
curve obtained from the intersection of the surface ®=®(D, t)
with the plane ®=q, as shown in FIG. 3. Based on this geo-
metric interpretation, one can develop various explicit as well
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as feedback representations for analog rank filters, including
such generalizations as L filters and a-trimmed mean filters
(Nikitin and Davidchack, 2003b).

[0067] Note that the terms analog ‘rank’, ‘quantile’, ‘per-
centile’, and ‘order statistic’ filters are often synonymous and
might be used alternatively in this disclosure.

D-2.1 Quantile Filters for Modulated Densities

[0068] Let us point out (see Nikitin and Davidchack,
2003a,b, for example) that various threshold densities can be
viewed as different appearances of a general modulated
threshold density (MTD)

WD)« {K (D) fup[D ~ ()]} D-5)

#D. 9= W)= K@)

where K(t) is aunipolar modulating signal. Various choices of
the modulating signal allow us to introduce different types of
threshold densities and impose different conditions on these
densities. For example, the simple amplitude density is given
by the choice K(t)=const, and setting K(t) equal to Ix(t)| leads
to the counting density. The significance of the definition of
the time dependent counting (threshold crossing) density
arises from the fact that it characterizes the rate of change in
the analyzed signal, which is one of the most important char-
acteristics of a dynamic system. Notice that the amplitude
density is proportional to the time the signal spends in a
vicinity of a certain threshold, while the counting density is
proportional to the number of ‘visits’ to this vicinity by the
signal. FIG. 4 shows both the amplitude and counting densi-
ties computed for the fragment of a signal shown in the top
panel of the figure. Note that the amplitude density has a sharp
peak at every signal extremum, while the counting density has
a much more regular shape.

[0069] An expression for the quantile filter for a modulated
density can be written as

dD;  wr(t)+{K(0)(q -~ Fap[Dg — x(D]} (D-6)

“dr T oD+ KD fap[Dy — 501}

and the physical interpretation of such a filter depends on the
nature of the modulating signal. For example, a median filter
in a rectangular moving window for K(t)=IX(t)If,, [x(1)]
yields D, ,(t) such that half of the extrema of the signal )X((t) in
the window are below this threshold.

Selected Acronyms and where they First Appear

[0070] AARF ... Adaptive Analog Rank Filter, page 20
[0071] AARS... Adaptive Analog Rank Selector, page 26
[0072] AMEF ... Analog Median Filter, page 39

[0073] AMCEF ... Analog Median Comb Filter, page 42
[0074] AQCF ... Analog Quantile Comb Filter, page 42
[0075] ARTEMIS . .. Adaptive Real-Time Embodiments

for Multivariate Investigation of Signals, page 5

[0076] AVATAR ... Analysis of Variables Through Analog
Representation, page 3

[0077] BASIS ... Bimodal Analog Sensor Interface Sys-
tem, page 30

[0078] EARL ... Explicit Analog Rank Locator, page 27

[0079] MTD ... Modulated Threshold Density, page 10
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[0080]
25

SPART ... Single Point Analog Rank Tracker, page

Selected Notations and where they First Appear

[0081] 6(x)...Heaviside unit step function, page 5

[0082] f.p Fap - - - continuous comparator (discrimina-
tor), equation (D-1) on page 9

[0083] D, (1),D, (t;T)...output of quantile filter of order q,
pages 9 and 31

[0084] 6(D,x)...threshold domain function, equation (1)
on page 13
[0085] IxI=...positive/negative component of X, equation

(7) on page 15

[0086] d(x)...Dirac delta function, equation (8) onpage 15

[0087] R (D,1t),R (t)...instantaneous counting rate, page
14 and equation (8) on page 15

[0088] R(D,1),R(1)...counting rate in moving window of
time, page 14 and equation (17) on page 18

[0089] #,,%...delayed comparator, page 23
[0090] #£,,°...averaging comparator, equation (27) on
page 24

DETAILED DESCRIPTION AND BEST MODE
OF THE INVENTION

[0091] The Detailed Description of the Invention is orga-
nized as follows.

[0092] Section 1 (p. 13) provides the definition of the
threshold domain function and Threshold Domain Filtering,
and explains its usage for feature extraction.

[0093] Section 2 (p. 14) deals with quantification of cross-
ings of threshold domain boundaries by means of Analog
Counting.

[0094] Section 3 (p. 17) introduces Multimodal Pulse
Shaping as a way of embedding an incoming signal into a
threshold space and thus enabling extraction of the features of
interest by the Threshold Domain Filtering. Subsection 3.1
describes Analog Bimodal Coincidence (ABC) counting sys-
tems as an example of a real-time signal processing utilizing
Threshold Domain Filtering in combination with Analog
Counting and Multimodal Pulse Shaping.

[0095] Section 4 (p. 20) presents various embodiments of
Analog Rank Filters which can be used in ARTEMIS in order
to reconcile the conflicting requirements of the robustness
and adaptability of the control levels of the Threshold
Domain Filtering. Subsection 4.1 describes the Adaptive
Analog Rank Filters (AARFs) and Adaptive Analog Rank
Selectors (AARSs), while §4.2 introduces the Explicit Ana-
log Rank Locators (EARLSs). Subsection 4.3 describes the
Bimodal Analog Sensor Interface System (BASIS) as an
example of an analog signal processing module operatable as
acombination of Threshold Domain Filtering, Analog Count-
ing, and Analog Rank Filtering.

[0096] As an additional illustration of ARTEMIS, §5 (p.
33) describes a technique and a circuit for generation of
monoenergetic Poissonian pulse trains with adjustable rate
and amplitude through a combination of Threshold Domain
Filtering and Analog Counting.

[0097] Section 6 (p. 35) discusses additional practical
implementations and applications of analog rank filters in
continuous time windows. Subsection 6.1 describes a modi-
fied practical approximation of a rank filter in an arbitrary
continuous time window and discusses its applications for
noise suppression. The modified approximation simplifies
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the hardware implementation of the filter and improves its
performance. Subsection 6.2 introduces analog rank comb
filters and illustrates their use in telecommunications and
image processing. Subsection 6.3 describes a method for
signal demodulation using a threshold filter.

1 Threshold Domain Filtering

[0098] Threshold Domain Filtering is used for separation
of'the features of interest in a signal from the rest of the signal.
In terms of a threshold domain, a ‘feature of interest’ is either
apoint inside of the domain, or a point on the boundary of the
domain. In an electrical apparatus, e.g., a typical Threshold
Domain Filter can be composed of (asynchronous) compara-
tors and switches, where the comparators operate on the
differences between the components of the incoming variable
(s) and the corresponding components of the control variable
(s). For example, for the domain defined as a product of two
ideal comparators represented by the Heaviside unit step
function 6(x), 6=0[x(t)-D]0[x(t)] (with two control levels, D
and zero), a point inside (that is, 6=1) corresponds to a posi-
tive-slope signal of the magnitude greater than D, and the
stationary points of x(t) above the threshold D can be associ-
ated with the points on the boundary of this domain. More
generally, as used in the present invention, a Threshold
Domain Filter is defined by its mathematical properties
regardless of their physical implementation.

Defining threshold domain Let us assume that a continuous
signal y=y(a, t) depends on some spatial coordinates a and
time t. Thus, in a vicinity of (a, t), this signal can be charac-
terized by its value y(a, t) at this point along with its partial
derivatives dy(a, t)/da, and Oy(a, t)/0t at this point. These
values (of the signal and its derivatives) can be viewed as
coordinates of a point x=x(a, t) in a threshold space, where the
vector x consists of the signal y and its various partial deriva-
tives. A particular feature of interest can thus be defined as a
certain region in the threshold space as follows.

[0099] Let us describe an ‘ideal’ threshold domain by a
(two-level) function 6(D, x) such that

{Z)(D, x) =g, 1if x is inside domain €8]

DD, x)=q otherwise,

where D is a vector of the control levels of the threshold filter.
Without loss of generality, we can set q;=1 and q,=0. For
example, in a physical space, an ideal cuboid with the edge
lengths a, b, and c, centered at (X, Yo, Zo), can be represented

by

ore o= A P22,

where we have assumed constant control levels and thus 0 is
a function of X, y, and z only. Note that for a ‘real’, or “fuzzy’,
domain the transition from q, to q, happens monotonically
over some finite interval (layer) of a characteristic thickness
Ao. The transition to a ‘real’ threshold domain can be accom-
plished, for example, by replacing the ideal comparators
given be the Heaviside step functions with the ‘real’ compara-
tors, 0—=F,p-

[0100] Note that an arbitrary threshold domain can be rep-
resented by a combination (e.g., polynomial) of several
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threshold domains. For example, the cuboid given by equa-
tion (2) can be viewed as a product of six domains with plane
boundaries, or as a product (intersection) of two domains
given by the rectangular cylinders

L ] ®

and

D0 =01 -4 -2 @

D(x, y, 2) = Dyy(x, 1)Dy (¥, 2)-

Features of a signal In terms of a threshold domain, a ‘feature’
of'a signal is either a point inside of the domain, or a point on
the boundary of the domain. For example, for the domain
0=0[x(t)-D]0[%(1)] (with two control levels, D and zero), a
point inside (that is, 6=1) corresponds to a positive-slope
signal of the magnitude greater than D, and a point on the
boundary of this domain is a stationary point of x(t) above the
threshold D.

[0101] One should notice that only a small fraction of the
signal’s trajectory might fall inside of the threshold domain,
and thus the duration of the feature might be only a small
fraction of the total duration of the signal, especially if a
feature is defined as a point on the domain’s boundary. There-
fore, it is impractical to continuously digitize the signal in
order to extract the desired short-duration features. To resolve
this, ARTEMIS utilizes an analog technique for extraction
and quantification of the salient signal features.

2 Analog Counting

[0102] In its simplest form, analog counting consists of
three steps: (1) time-differentiation, (2) rectification, and (3)
integration. The result of step 2 (rectification) is the instanta-
neous count rate R (D, t), and step 3 (integration) outputs the
count rate R(D, t) in a moving window of time w(t), R(D,
D=w(t)*R (D, t).

Counting crossings of threshold domain boundaries The
number of crossings of the boundaries of a domain 6 by a
point following the trajectory x(t) during the time interval [0,
T] can be written as

N = del“iZ)[D x([)]‘ ©)
o ldr ’

for the total number of crossings, or

N. :del“iZ)[D x([)]‘ ©
+ R d[ )

+

for the number of entries (+) or exits (-). In equation (6), IxI,
denotes positive/negative component of x,

M

1
x| + = z(lxl + x).
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Instantaneous count rates Note that the integrands in equa-
tions (5) and (6) represent the instantaneous rates of crossings
of the domain boundaries,

Roy= ) o—1), ®

where 0(t) is the Dirac delta function, and t; are the instances
of'the crossings. It should be easy to see that a number of other
useful characteristics of the behavior of the signal inside the
domain can be obtained based on the domain definition given
by equation (1).

[0103] Consider, for example, a threshold domain D in a
physical space given by a product (intersection) of two fields
of view (e.g., solid angles) of two lidars* or cameras. When an
object following the trajectory x(t) is in a field of view, the
signal is ‘1°. Otherwise, it is ‘0’. Then the product of the
signals from both lidars (cameras) is given by 0[D, x(t)], and
the counting of the crossings of the domain boundaries by the
object can be performed by an apparatus implementing equa-
tions (5) or (6). The following characteristics of the object’s
motion though the domain are also useful and easily obtained:
?Here LIDAR is an acronym for “LIght Detector And Ranger”.

The time spent inside the domain,

1=[o"dR [Dx(1)], ©)
the distance traveled inside the domain,
5= oldtlZ(6)10/Dx(2)], (10)

and the average speed inside the domain,

r an
f dix(0IDID. x0)]
0000000

t T dx)

[0104] When using the ‘real’ comparators in a threshold
filter and ‘real’ differentiators in an analog counter, the main
property of the ‘real’ instantaneous rate R(t) is

im i = -5 12)
i R0 =2 8-,

where AD and 8t are the width and the delay parameters of the
comparators and differentiators, respectively. The property
given by equation (12) determines the main uses of the instan-
taneous rate. For example, multiplication of the latter by a
signal x(t) amounts to sampling this signal at the times of
occurrence of the events t,. Other temporal characteristics of
the events can be constructed by time averaging various prod-
ucts of the signal with the instantaneous rate.

Count rate in a moving window of time Count rate in a
moving window of time w{(t) is obtained through the inte-
gration of the instantaneous rate by an integrator with an
impulse response w,{t), namely as

R(D,)y=w({)*R (D,j). (13)

[0105] Although there is effectively no difference between
averaging window functions which rise from zero to a peak
and then fall again, boxcar averaging is deeply engraved in
modern engineering, partially due to the ease of interpretation
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and numerical computations. Thus one of the requirements
for counting with a non-boxcar window is that the results of
such measurements are comparable with boxcar counting. As
an example, let us consider averaging of the instantaneous
rates by a sequence of n RC-integrators. For simplicity, let us
assume that these integrators have identical time constants
1=RC, and thus their combined impulse response is

! 14

= " 7r/r0
wy(1) = me (7).

Comparability with a boxcar function of the width T can be
achieved by equating the first two moments of the respective
weighting functions. Thus a sequence of n RC-integrators
with identical time constants t=Y2T/,3n will provide us with
rate measurements corresponding to the time averaging with
a rectangular moving window of width T.?

3 Of course one can design different criteria for equivalence of the boxcar
weighting function and w(t). In our example we were simply looking for the
width parameter of w(t) which would allow us to interpret the rate measure-
ments with this function as ‘a number of events per time interval T°.

[0106] FIG. 5 compares the moving window rates mea-
sured with the boxcar (thin solid line) and the “triple-integra-
tor’test function (n=3 in equation (14), thick line) witht=T/6.
The respective test functions are shown in the upper left
corner of the figure. The gray band in the figure outlines the
error interval in the rate measurements as the square root of
the total number of counts in the time interval T per this
interval.

[0107] One of the obvious shortcomings of boxcar averag-
ing is that it does not allow meaningful differentiation of
counting rates, while knowledge of time derivatives of the
event occurrence rate is important for all physical models
where such rate is a time-dependent parameter. Indeed, the
time derivative of the rate measured with a boxcar function of
width T is simply T~! times the difference between the ‘origi-
nal’ instantaneous pulse train and this pulse train delayed by
T, and such representation of the rate derivative hardly pro-
vides physical insights. On the other hand, the time derivative
of the ‘cascaded integrators” weighting function w,, given by
equation (14) is the bipolar pulse w,~t~(w,,_,-w,,), and thus
the time derivative of the rate evaluated with w,(t) is a mea-
sure of the ‘disbalance’ of the rates within the moving window
(positive for a ‘front-loaded’ sample, and negative otherwise).

3 Multimodal Pulse Shaping

[0108] In order to focus upon characteristics of interest,
feature definition may require knowledge of the (partial)
derivatives of the signal. For example, in order to count the
extrema in a signal x(t), one needs to have access to the time
derivative of the signal, X(t). A typical Multimodal Pulse
Shaper in the present invention transforms at least one com-
ponent of the incoming signal into at least two components
such that one of these two components is a (partial ) derivative
of'the other, and thus Multimodal Pulse Shaping can be used
for embedding the incoming signal into a threshold space and
enabling extraction of the features of interest by the Thresh-
old Domain Filtering.

[0109] Note, however, that differentiation performed by
any physical differentiator is not accurate. For example, a
time derivative of f(t) obtained by an RC differentiator is
proportional to [e~0(t)]*(t), where T=RC, not to f(t). Thus
Multimodal Pulse Shaping does not attempt to straightfor-
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wardly differentiate the incoming signal. Instead, it processes
an incoming signal in parallel channels to obtain the neces-
sary relations between the components of the output signal.
For example, if x(a, t) is a result of shaping the signal y(a, t)
by the first channel of a pulse shaper with the impulse
response f(a, t),

x(a,)=fla,t)*y(a,1), (15)

then the derivatives of x can be obtained as

i(a, 0= f=ya, 1) and (16)

)= af I
B_zzix(a’ )= B_a; =y(a, 1).

Thus Multimodal Pulse Shaping will be achieved if the
impulse responses of various channels in the pulse shaper
relate as the respective derivatives of the impulse response of
the first channel.

[0110] FIG. 6 shows an example of bimodal pulse shaping
which can be used for both the amplitude and timing mea-
surements of a short-duration event. An event of magnitude E,
and arrival time t; is passed through an RC pulse shaping
network, producing a continuous signal x(t). The event can be
fully characterized, e.g., by the first extremum of x(t), since
the height of the extremum is proportional to E,, and its
position in time is delayed by a constant with respect to t,. By
replacing an RC integrator in the shaping network by an RC
differentiator with the same time constant, one can obtain an
accurate time derivative of x(t). Now the event can be asso-
ciated with the inbound crossing of the boundary of the
threshold domain 8=0[x(t)-D]6[-%(t)], where the threshold
D is set at a positive value to eliminate the rest of the signal’s
stationary points.

3.1 Example: Analog Bimodal Coincidence (ABC)
Counting Systems

[0111] Let us illustrate the usage of a threshold filter, in
combination with multimodal pulse shaping and analog
counting, in a signal processing module for a two-detector
charged particle telescope. This module is an example of an
Analog Bimodal Coincidence (ABC) counting system.
[0112] In our approach, we relate the short-duration par-
ticle events to certain stationary points (e.g., local maxima) of
a relatively slow analog signal. Those points can be accu-
rately identified and characterized if the time derivative of the
signal is available. Thus the essence of ABC counting systems
is in the use of multiple signal characteristics—here a signal
and its time derivative—and signals from multiple sensors in
coincidence to achieve accuracy in both the amplitude and
timing measurements while using low-speed, analog signal
processing circuitry. This allows us to improve both the engi-
neering aspects of the instrumentation and the quality of the
scientific data.

[0113] A simplified schematic of the module is shown in
FIG. 7. A bimodal pulse shaping is used to obtain an accurate
time derivative of the signal from a detector. Comparators are
used to obtain two-level signals with the transitions at appro-
priate threshold crossings (e.g., zero crossings for the deriva-
tive signal). Simple asynchronous analog switches are used to
obtain the products of the comparators’ outputs suitable for
appropriate conditional and coincidence counting. The com-
parators and the analog switches constitute the threshold
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domain filter with the thresholds {D; }, {D,}, and the grounds
as the control levels. A-Counters are employed for counting
the crossings of the threshold domains’ boundaries. In its
simplest form, an A-Counter is a differentiating circuit (such
as a simple RC-differentiator) with a relatively small time
constant (in order to keep the dead-time losses small), fol-
lowed by a precision diode and an integrator with a large time
constant (at least an order of magnitude larger than the
inverted smallest rate to be measured). A TOF selector
employs an additional pulse shaping amplifier, and a pair of
comparators with the levels corresponding to the smallest and
the largest time of flight.

Bimodal pulse shaping and instantaneous rate of signal’s
maxima When the time derivative of a signal is available, we
can relate the particle events to local maxima of the signal and
accurately identify these events. Thus bimodal pulse shaping
is the key to the high timing accuracy of the module. As shown
in FIG. 7, a bimodal pulse shaping unit outputs two signals,
where the second signal is proportional to an accurate time
derivative of the first output. The rate R(t), in the moving
window of time w {(t), of a signal’s maxima above the thresh-
0ld D can be expressed as

an

d
R(@) = wr @)+ | A6lx(0) - DIO[-3O]}

5
+

where lyl, denotes the positive part of y (see equation (7)), 0
is the Heaviside unit step function, and the asterisk denotes
convolution. Equation (17) represents an idealization of the
measuring scheme consisting of the following steps: (i) the
first output of the bimodal pulse shaping unit is passed
through a comparator set at level D, and the second output—
through a comparator set at zero level; (ii) the product of the
outputs of the comparators is differentiated, (iii) rectified by a
(precision) diode, and (iv) integrated on a time scale T (by an
integrator with the impulse response w(t)). Note that steps
(ii) through (iv) represent passing the product of the compara-
tors through an A-Counter. Also note that the output of step
(iii) is the instantaneous rate of the signal’s maxima above
threshold D.

Basic coincidence counting For basic coincidence counting,
the coincident rate R (t) can be written as

d (18)
Re(2) = wr (1) = %{9[961 (8) = D1]0[=%1 (D]0[x2(2) — Do ]}

where the notations are as in equation (17). One can see that
equation (18) differs from equation (17) only by an additional
term in the product of the comparators’ outputs.

Transition to realistic model of measurements It can be easily
seen that equations (17) and (18) do not correctly represent
any practical measuring scheme implementable in hardware.
For example, both equations contain derivatives of discon-
tinuous Heaviside functions, and thus instantaneous rates are
expressed through singular Dirac d-functions. To make a
transition from an ideal measurement scheme to a more real-
istic model, we replace the Heaviside step functions by ‘real’
discriminators (8(x)—ag,(1)* (%), where Ag (1) is a con-
tinuous kernel such that [ _“dtog,(t)=1), and perform differ-
entiation through a continuous kernel (d/dt . . . —es,(D)* .. .),
etc. We choose appropriate functional representations of f, 5,
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a,(1), etc., for various elements of a schematic, and also add
appropriate noise sources such as thermal noise at all inter-
mediate measuring steps. FIGS. 8 and 9 illustrate such real-
istic measurements of instantaneous rates of extrema and
coincident maxima, respectively. Notice that, in both figures,
anevent is represented by a narrow peak of a prespecified area
in the instantaneous rates.

Time-of-flight (TOF) constrained measurements The time-
of-flight constrained coincident rate can be expressed, for
times of flight larger than At, as

R =wr(D)= (19

[ (D12 - Dol — Zu]|

+

%0

where h is some (unipolar or bipolar) impulse response func-
tion, Z,, is a threshold level corresponding to the TOF equal
to At, and D, =18[x,(0)-D,]6[-%,(D]6[x(t)-D,]I,. Thus a TOF
selector (see FIG. 7) will consist of a pulse shaping amplifier
with an impulse response h, and a differential comparator.
FIG. 10(a) illustrates coincident counting according to equa-
tion (19), and FIG. 10() provides an example of using a
realistic model of the TOF measurements, with functional
representations of the elements of the schematic correspond-
ing to commercially-available, off-the-shelf (COTS) compo-
nents. As can be seen in the figure, the performance of the
system is not significantly degraded by the transition from an
idealized to a more realistic model.

4 Analog Rank Filtering

[0114] InARTEMIS, Analog Rank Filtering can beused for
establishing and maintaining the analog control levels of the
Threshold Domain Filtering. It ensures the adaptivity of the
Threshold Domain Filtering to changes in the measurement
conditions (e.g., due to nonstationarity of the signal or instru-
ment drift), and thus the optimal separation of the features of
interest from the rest of the signal. For example, the threshold
level D in the domain 8=0[x(t)-D] 0[X(t)] can be established
by means of Analog Rank Filtering to separate the stationary
points of interest from those caused by noise. Note that the
Analog Rank Filtering outputs the control levels indicative of
the salient properties of the input signal(s), and thus can be
used as a stand-alone embodiment of ARTEMIS for adaptive
real-time signal conditioning, processing, analysis, quantifi-
cation, comparison, and control, and for detection, quantifi-
cation, and prediction of changes in signals.

Creating and maintaining baseline and analog control levels
by analog rank filters Analog rank filters can be used to
establish various control levels (reference thresholds) for the
threshold filter. When used in ARTEMIS, rank-based filters
allow us to reconcile, based on the rank filters’ insensitivity to
outliers, the conflicting requirements of the robustness and
adaptability of the control levels of the Threshold Domain
Filtering. In addition, the control levels created by Analog
Rank Filters are themselves indicative of the salient proper-
ties of the input signal(s).

4.1 Adaptive Analog Rank Filters (AARFs)

[0115] Rank filter in RC window When the time averaging
filter in equation (D-3) is an RC integrator (RC=r), the dif-
ferential equation for the output D (t) of a rank filter takes an
especially simple form and can be written as
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dD;  AQ2q—1)— FaplDy(0 - x(1)] 20)
dr " 2Ac(s)# fan[Dglt) = x(5)] lo=s”

where h_(1)=0()exp(-t/t-InT).* The solution of this equation
is ensured to rapidly converge to D (1) of the chosen quantile
order q regardless of the initial condition (Nikitin and David-
chack, 2003b). Note also that the continuity of the comparator
is essential for the right-hand side of equation (20) to be well
behaved.

4 In more explicit notation, the convolution integral in the denominator of
equation (20) can be written as

s—=1

1
hels) # fup[Dyg 1) = ¥(5)] s = = f ds exp(— ) fan[Dq(t) = X(5)]

T

[0116] The main obstacle to a straightforward analog
implementation of the filter given by equation (20) is that the
convolution integral in the denominator of the right-hand side
needs to be re-evaluated (updated) for each new value of D,,.
If we wish to implement an analog rank filter in a simple
feedback circuit, then we should replace the right-hand side
of equation (20) by an approximation which can be easily
evaluated by such a circuit. Of course, one can employ a great
variety of such approximations (Bleistein and Handelsman,
1986, for example), whose suitability will depend on a par-
ticular goal. A very simple approximation becomes available
in the limit of sufficiently small T, since then we can replace
() £, plD,(D-x(5)]1,, by b (1*£, D, (1)-x(1)] in equation
(20). As was shown by Nikitin and Davidchack (2003b), this
simple approximation can still be used for an arbitrary time
window w(t), if we represent w(t) as a weighted sum of many
RC integrators with small T. However, this approximation
fails when the threshold resolution is small (e.g., when AD<h,
(H*%(t)IT), and thus cannot be used in real-time processing of
non-stationary signals.

Adaptive approximation of a feedback rank filter in an arbi-
trary time window A rank filter in a boxcar moving time
window B (t)=[0(t)-0(t-T)]/T is of a particular interest,
since it is the most commonly used window in digital rank
filters. The output D, of an analog rank filter in this window is
implicitly defined as B{)*f , 5|D,—x()]=q. To construct an
approximation for this filter-suitable for implementation in an
analog feedback circuit, we first approximate the boxcar win-
dow B(t) by the following moving window w(t):’

SSince a moving time window is always a part of a convolution integral, the

approximation is understood in the sense that B{t)*g(t)=w(t)*g(t), where g(t)
is a smooth function.

= 21
(D) = 57 ) hele = 247,
k=0

where Tr=T/(2N). The first moments of the weighting func-
tions wo(t) and B,{t) are identical, and the ratio of their

respective second moments is y1+2/N>~1+1/N>. The other
moments of the time window w,(t) also converge rapidly, as
N increases, to the respective moments of B(t), which justi-
fies the approximation of equation (21).
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[0117] Now, the output of a rank filter in such a window can
be approximated as discussed earlier, namely as (Nikitin and
Davidchack, 2003b)°

6 An explicit expression for the convolution integral h (t)*f,
is

[D,(t)-x(t-2KT)]

he (D) = fap[Dg (1) — (1 - 2k7)] =

lf ds exp( )fAD [Dy(s) = x(s — 2k7)].
TJ

NoL 22)
ANQg-1)- Z Fap[Dy(1) - x(t - 2k7)]
q k=0

N-1
2AThe (1) = Eo Jap[Dg(t) — x(r = 2k7)]

wheret=T/(2N). Note that the accuracy of this approximation
is contingent on the requirement that AD>|h_(t)*%(t)lt. This
means that, if we wish to have a simple analog circuit and
keep N relatively small, we must choose AD sufficiently large
for the approximation to remain accurate. On the other hand,
we would like to maintain high resolution of the acquisition
system, that is, to keep AD small.

[0118] In order to reconcile these conflicting requirements,
we propose to use an adaptive approximation, which reduces
the resolution only when necessary. This can be achieved, for
example, by using equation (D-2) and rewriting the threshold
derivative of h (t)*# . 5[D,—x(1)] as

{ Fap[Dgy - x(0)] —} 23
(D) = ~
Fap[D,- —x(t
helt)+ fsn Dy = )] x —— A(gl’[_g ;‘( !

g+ q-

where D, is the output of a rank filter of the quantile order
q+9dq, dq<<q. In essence, the approximation of equation (23)
amounts to decreasing the resolution of the acquisition sys-
tem only when the amplitude distribution of the signal broad-
ens, while otherwise retaining high resolution.

[0119] Combining equations (21-23), we arrive at the fol-
lowing representation of an adaptive approximation to a feed-
back rank filter in a boxcar time window of width T:

. 1 24
Dq(1) = 5[Dg+ (1) + Dg-(1)]

ANQ2g—1+20g)—

75" p[Dg (1) = x(t - 2k7)]

MZ

. k=0 0Dy (1)
Dy (1) = =
he(2) # 8F ap(2) i
ANQ2g—1+20g)—
N-
Z Fap[Dy(6) — x(t - 2k7)]
=0 8D4(0)
Dy (0= ~
hr([)*(STAD([) T
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where 8D, (t)=D,,()-D,_(t) and

i L ( FaplDye () = x0 = 240)] — (25)
SFap() = E . )
Fap[Dg-(0) = x(1 = 2k7)]

k=0

This approximation preserves its validity for high resolution
comparators (small AD), and its output converges, as N
increases, to the output of the ‘exact’ rank filter in the boxcar
time window B(t). Unlike the currently known approaches
(see, for example, Urahama and Nagao 1995; Opris 1996),
the analog rank filters enabled through equation (24) are not
constrained by linear convergence and allow real time imple-
mentation on an arbitrary timescale, thus enabling high speed
real time rank filtering by analog means. The accuracy of this
approximation is best described in terms of the error in the
quantile q. That s, the output D (t) can be viewed as bounded
by the outputs of the ‘exact’ rank filter for different quantiles
q+Aq. When AD and 8q in equation (24) are small, the error
range Aq is of order 1/N.

[0120] Note that, even though equation (24) represents a
feedback implementation of a rank filter, it is stable with
respect to the quantile values q. In other words, the solution of
this equation will rapidly converge to the ‘true’ value of D (1)
regardless of the initial condition, and the time of conver-
gence within the resolution of the filter AD for any initial
condition will be just a small fraction of . This convergence
property is what makes the implementation represented by
equation (24) suitable for a real time operation on an arbitrary
timescale.

Implementation of AARFSs in analog feedback circuits FIG.
11 illustrates implementation of an adaptive real time rank
filter given by equation (24) in an analog feedback circuit.
One skilled in the art will recognize that this circuit is a
simplified embodiment of a more general AARF depicted in
FIG. 12.

Generalized description of AARFs As shown in FIG. 12, an
input variable x(t) and a plurality of feedbacks of Offset Rank
Filtered Variables {D, (1)} are passed through a plurality of
(delayed) comparators forming a plurality of outputs of the
comparators {£,”/(t)}={#,”[D, (1),x(1)]}. (Please note that
in this and further figures a double lineina diagram indicates
a plurality of signals.) Said plurality of the outputs of the
comparators {#,%’} is used to form (i) a plurality {A(2q,~1)-
£,%') of differences between said outputs of the comparators
and the respective Offset Quantile Parameters of said Offset
Rank Filtered Variables, and (ii) a weighted difference &
£, ,(0=2,0.%,%, where 2,a,~0, of said outputs of the com-
parators. Said weighted difference 3F , (1) of the outputs of
the comparators is passed through a time averaging amplifier,
forming a Density Function h (t)*3F, ,(t). The plurality of
the feedbacks of the Offset Rank Filtered Variables {D, (1)} is
used to form a weighted difference 0D, (t)=T,3,D, (1), Where
2.8,=0, of said feedbacks. Each dlfference A(2q 1)-#,%
between the outputs of the comparators and the respective
Offset Quantile Parameters of the Offset Rank Filtered Vari-
ables is multiplied by a ratio of the weighted difference 3D, (t)
of'the feedbacks of the Offset Rank Filtered Variables and the
Density Function h (t)*8% , 5(t), forming a plurality of time
derivatives of Offset Rank Filtered Variables {B, (t)}. Said
plurality of the time derivatives {I 4, ®} is 1ntegrated to pro-
duce the plurality of the Offset Rank Filtered Variables {D
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(0)}. The plurality of the Offset Rank Filtered Variables {D,,
(0} is then used to form an output Rank Filtered Varlable
D, (t) as a weighted average Z,w,D_ (1), Z,w,=1, of said Offset
Rank Filtered Variables. “

[0121] As an example, FIG. 13 provides a simplified dia-
gram of a 3-comparator implementation of AARF. In this
example, the offset quantile orders are q,=q, q,=q-dq, and
q5;=q+dq, and the weights for weighted average and differ-
ences are: w,=1, w,=w,=0, a,=f,=0, and o,=f,=-0,=—
B5=-1.

[0122] Note that both the input and output of an AARF are
continuous signals. The width of the moving window and the
quantile order are continuous parameters as well, and such
continuity can be utilized in various analog control systems.
The adaptivity of the approximation allows us to maintain a
high resolution of the comparators regardless of the proper-
ties of the input signal, which enables the usage of this filter
for nonstationary signals.

[0123] Also, let us point out that the equations describing
this filter are also suitable for numerical computations, espe-
cially when the number of data points within the moving
window is large. A simple forward Euler method is fully
adequate for integrating these equations, and the numerical
convolution with an RC impulse response function requires
remembering only one previous value. Thus numerical algo-
rithms based on these equations have the advantages of both
high speed and low memory requirements.

Delayed comparators In our description of AARFs we have
assumed that the comparators are the delayed comparators
with the outputs represented by the moving averages

N-1 26)
DIy, x(0] = > wF aplDg(d) = 3= Ag)],
k=0

where w, are positive weights such that Z,w,=1, and it can be
assumed, without loss of generality, that At,=0. Obviously,
when N=1, a delayed comparator is just a simple two-level
comparator. FIG. 14 illustrates a principle schematic of a
delayed comparator.

Averaging comparators In the description of Adaptive Analog
Rank Selectors further in this disclosure we will use another
type of a comparator, which we refer to as an averaging
comparator. Unlike a delayed comparator which takes a
threshold level and a scalar signal as inputs, the inputs of an
averaging comparator are a threshold level D and a plurality
ofinput signals {x,(t)},i=1, ..., N. The output of an averaging
comparator is then given by the expression

@n

i [De(0) 1x:(0}] ZwﬂuD CEPIOIN

i=1

where w; are positive weights such that Zw,=1. FIG. 15
illustrates a principle schematic of an averaging comparator.
[0124] FIG. 16 compares the performance of the analog
rank filter given by equation (24) to that of the ‘exact’ quantile
filter in a boxcar moving window of width T. In this example,
the quantile interval dq is chosen as 8q=1072 (1%). The con-
tinuous input signal x(t) (shown by the solid dark gray line) is
emulated as a high resolution time series (2x10° points per
interval T). The ‘exact’ outputs of a boxcar window rank filter
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are shown by the dashed lines, and their deviations within the
+Aq intervals are shown by the gray bands. The respective
outputs of the approximation given by equation (24) are
shown by the solid black lines. The width parameter AD of the
comparators, the width T of the boxcar time window, the
quantile order g, and the number N of exponential kernels in
the approximation are indicated in the figure.

[0125] The (instantaneous) accuracy of the approximation
given by equation (24) decreases when the input signal x(t)
undergoes a large (in terms of the resolution parameter AD)
monotonic change over a time interval of order . The main
effect of such a ‘sudden jump’ in the input signal is to delay
the output D, (1) relative to the output of the respective ‘exact’
filter. This delay is shown as At in the lower left portion of the
upper panel, where the input signal is a square pulse. This
timing error At is inversely proportional to the number N of
the kernels in the approximation. The accuracy of the
approximation can also be described in terms of the ampli-
tude error. As can be seen in FIG. 16, the residual oscillations
of the outputs of the analog filter occur within the q+1/(2N)
interval around the respective outputs of the “exact’ filter (that
is, within the width of the gray bands in the figure).
Establishing internal reference signal (baseline and analog
control levels) As stated earlier, a primary use of Analog Rank
Filtering in ARTEMIS is establishing and maintaining the
analog control levels of the Threshold Domain Filtering,
which ensures the adaptivity of the Threshold Domain Filter-
ing to changes in the measurement conditions, and thus the
optimal separation of the features of interest from the rest of
the signal. Such robust control levels can be established, for
example, by filtering the components of the signal with a
Linear Combination of Analog Order Statistics Filters oper-
able on a given timescale.

Example: ‘Trimean’ reference. FIG. 17 provides an example
of'using an internal reference (baseline) for separating signal
from noise, and illustrates a technique for establishing a ref-
erence baseline as a linear combination of quartile outputs
(i.e., q=Y4, q=Y%, and q=%4) of AARFs. In this example, the
features of interest are tall pulses protruding from a noisy
background. For example, one would want to count the num-
ber of such pulses, while ignoring the smaller pulses due to
noise. This can be accomplished by choosing a reference
baseline such that most of the pulses of interest peak above
this baseline, while the accidental crossings of the baseline by
noise are rare. A good choice for a baseline thus would be a
moving average of the noise plus several standard deviations
of'the noise in the same moving window of time (a “variance’
baseline, gray lines in the figure). However, the presence of
the high-amplitude pulses of the ‘useful” signal will signifi-
cantly disturb such a baseline. Instead, one can create a base-
line by using a linear combination of the outputs of AARFs
for different quantile orders (e.g., for the quartiles q=Y4, =4,
and q=%—"‘quartile’ baseline, dashed lines in the figure). As
shown in the upper panel of the figure, in the absence of the
signal of interest the baselines created is by both techniques
are essentially equivalent. However, as shown in the lower
panel of the figure, in the presence of tall pulses the ‘variance’
baseline is significantly disturbed and fails to separate the
noise from the signal, while the ‘quartile’ baseline remains
virtually unaffected by the addition of these pulses. In both
panels, the distance between the time ticks is equal to the
width of the moving time window.

[0126] FIG. 18 illustrates a principle diagram of a circuit
for establishing a baseline as a linear combination of the
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quartile outputs (q=Y%, q=Y, and q=%4) of AARFs. One
skilled in the art will recognize that a variety of other linear
combinations of outputs of AARFs of different quantile
orders can be used for establishing and maintaining the ana-
log control levels of the Threshold Domain Filtering.

Single Point Analog Rank Tracker (SPART) The approxima-
tion of equation (24) preserves its validity for high resolution
comparators (small AD), and its output converges, as N
increases, to the output of the ‘exact’ rank filter in the boxcar
time window B /(t). However, even a single-point approxima-
tion (N=1 in equation (24), i.e., simple rather than delayed
comparators in AARF) can be fully adequate for creating and
maintaining the baseline and analog control levels in analog
counting systems, since such a simplified implementation
preserves the essential properties of the ‘exact’ rank filter
needed for this purpose. We shall call this version ofan AARF
the “Single Point Analog Rank Tracker’, or SPART.
Adaptive Analog Rank Selectors (AARSs) While an AARF
operates on a single scalar input signal x(t) and outputs a q th
quantile D_(t) of the input signal in a moving window of time,
an AARS operates on a plurality of input signals {x,(t)}, i=1,
..., N, and outputs (‘selects’) an instantaneous q th quantile
D, (t) (in general, a weighted quantile) of the plurality of the
input signals. Such transition from an AARF to an AARS can
be achieved by replacing the delayed comparators in an
AAREF by averaging comparators. For example, a 2-compara-
tor AARS can be represented by the following equation:

. 1 28
Dy(t) = 5[Dye (1) + Dy-(0]
ANQ2g—-1+26g) —
N ~
> F anlDg(0) = %0
. o1 0Dy (1)
Dy () = p
B (D)% 6F ap(D) i
AN(2g—-1-26g)—
N ~
D FanlDe-(0) - x(0)] oD
Dy = = = 5@
he(0) +6F ap (@) T
where 8D (1)=D_,(1)-D,_(t) and
29

i S ( FanlDyr (0 —x,(0)] -
SF ap@® = Z . .
Fap[Dg- (1) — x;(1)]

i=1

Note that the time of convergence (or time of rank selection)
is proportional to the time constant T=RC of the RC integra-
tor, and thus can be made sufficiently small for a true real time
operation of an AARS. FIG. 19 illustrates a principle sche-
matic of an Adaptive Analog Rank Selector given by equation
(28) in an analog feedback circuit. One skilled in the art will
recognize that this circuit is a simplified embodiment of a
more general AARS depicted in FIG. 20.

Generalized description of AARSs As shown in FIG. 20, a
plurality of input variables {x,(1)},j=1, ..., N, and a plurality
of feedbacks of Offset Rank Selected Variables {D, (D)} are
passed through a plurality of averaging comparators forming
a plurality of outputs of the comparators {#F,“()}={
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$a5” D, (0. KON {Z,-,,F 45D, (O-x, 011} Said plu-
rality of the outputs of the comparators { £,*°} is used to form
(i) a plurality {A(2q,-1)-#,"} of differences between said
outputs of the comparators and the respective Offset Quantile
Parameters of said Offset Rank Selected Variables, and (ii) a
weighted difference 8%, ,(1)=Z,0,F %, where 2 0,0, of said
outputs of the comparators. Said weighted difference 8%, (1)
of the outputs of the comparators is passed through a time
averaging amplifier, forming a Density Function h_(t)*d
$£.5(t). The plurality of the feedbacks of the Offset Rank
Selected Variables {D, (1)} is used to form a weighted differ-
ence 3D (1)=Z,8,D, (1), where 2,30, of said feedbacks.
Each difference A(2q,-1)-F,""° between the outputs of the
comparators and the respective Offset Quantile Parameters of
the Offset Rank Selected Variables is multiplied by a ratio of
the weighted difference 3D (t) of the feedbacks of the Offset
Rank Selected Variables and the Density Function h (t)*d
£, p(t), forming a plurality of time derivatives of Offset Rank
Selected Variables {®_ (t)}. Said plurality of the time deriva-
tives {®, (1)} is integrated to produce the plurality of the
Offset Rank Selected Variables {D, (t)}. The plurality of the
Offset Rank Selected Variables {D, (1)} is then used to form
an output Rank Selected Variable D (t) as a weighted average
Zw,D (D), Z,w,=1, of said Offset Rank Selected Variables.

[0127] Adaptive Analog Rank Selectors are well suited for
analysis and conditioning of spatially-extended objects such
as multidimensional images. For example, a plurality of input
signals can be the plurality of the signals from a vicinity
around the spatial point of interest, and the weights {Vj} can
correspond to the weights of a spatial averaging kernel. This
enables us to design highly efficient real-time analog rank
filters for removing dynamic as well as static impulse noise
from an image, as illustrated in F1G. 21 for a two-dimensional
monochrome image. In this example, a median filter (q=12)
according to equation (28) is used.” Panel (a) shows the origi-
nal (uncorrupted) image. Panel (b) shows the snapshots, at
different times, of the noisy image and the respective outputs
of'the filter. In this example, approximately 45 of the pixels of
the original image are affected by a bipolar non-Gaussian
random noise at any given time. Panel (c¢) provides an
example of removing the static noise (V5 of the pixels of the
original image are affected). This example also illustrates the
fact that the characteristic time of convergence of the filter
based on equation (28) is only a small fraction of the time
constant T=RC of the RC integrator, which makes this circuit
suitable for a truly real-time operation. This fast convergence
is a consequence of the fact that the speed of convergence is

inversely proportional to the density function h (t)*35 , 5(t).

7 In general, the quantile order of the filter should be chosen as q=®,,(0), where
@, is the amplitude distribution of the noise (either measured or known a

priori). In the example of this section, ®,(0)=Y2.

4.2 Explicit Analog Rank Locators (EARLSs)

[0128] Explicitexpression for an analog quantile filter Note
that a differential equation is not the only possible embodi-
ment of an analog quantile filter. Other means of locating the
level lines of the threshold distribution function can be devel-
oped based on the geometric interpretation discussed in §D-2.
For example, one can start by using the sifting property of the
Dirac 8-function to write D (t) as
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Dy(n) = fm dDDS[D - Dy(1)] 30)

for all t. Then, recalling that D (t) is a root of the function
d(D, t)—q and that, by construction, there is only one such
root for any given time t, we can replace the 6-function of
thresholds with that of the distribution function values as
follows:

D0 = r dDDD, DS[DD, 1) — q]. e

Here we have used the following property of the Dirac d-func-
tion (see Davydov, 1988, p. 610, eq. (A 15), for example):

O(x —x;)
Lf Gl

(32

Sla-fwl = Z

where If'(x,)! is the absolute value of the derivative of f(x) at
X,, and the sum goes over all x, such that f(x,)=c.. We have also
used the fact that ¢(D, t)=0.

[0129] The final step in deriving a practically useful real-
ization of the quantile filter is to replace the d-function of the
ideal measurement process with a finite-width pulse function
8, of the real measurement process, namely

33
D, = f dDDH(D, 1gag[O(D, )~ gl, B3

where Aq is the characteristic width of the pulse. That is, we
replace the d-function with a continuous function of finite
width and height. This replacement is justified by the obser-
vation made earlier: it is impossible to construct a physical
device with an impulse response expressed by the d-function,
and thus an adequate description of any real measurement
must use the actual response function of the acquisition sys-
tem instead of the d-function approximation. We shall call an
analog rank filter given by equation (33) the Explicit Analog
Rank Locator (EARL).

Analog L filters and c-trimmed mean filters It is worth point-
ing out the generalization of analog quantile filters which
follows from equation (31). In the context of digital filters,
this generalization corresponds to the L filters described by
Bovik et al. (1983).

[0130] Indeed, we can write a linear combination of the
outputs of various quantile filters as

1 (34)
Dp(n) = fo dgWir(q)D, (1)

1 o0
[ aawio [~ apow. note. n-a
0 —oa

foo dDD¢(D, NW,[D(D, 1)],

13
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where W, is some (normalized) weighting function. Note that
the difference between equations (34) and (33) is in replacing
the narrow pulse function g, , in (33) by an arbitrary weight-
ing function W;.

[0131] A particular choice of W, in (34) as the rectangular
(boxcar) probe of width 1-2a., centered at %4, will correspond
to the digital a-trimmed mean filters described by Bendat
(1998):

Dy = fm dDD(D, Dby [®(D, 1], 0 <a <1/2, @3

where b, (x)=1/1-2a[0(x-2)-0(x-1+a)]. When a=0, equa-
tion (35) describes the running mean filter, D,_,(t)=x(t), and
in the limit a—%% it describes the median filter, lim,_.,,,
D.(0)=D,.(®).

Dealing with improper integration: Adaptive EARL The main
practical shortcoming of the filter given by equation (33) is
the improper integral with respect to threshold. This diffi-
culty, however, can be overcome by a variety of ways.
[0132] For example, we can use the fact that rank is not
affected by a monotonic transformation. That is, if D, is the
qth quantile of the distribution w.(t)*0[D-x(t)] (that is, w_(t)
*0[D,~x(0]=q), then f(D,) is the qth quantile of the distri-
bution w_(1)*0{f(D)-[f[x(t)] }:

w(*0{f(D)-Fx(D)1}=g.

where f(&) is a monotonically increasing function of &.
[0133] Now let us choose E=f(E) as the response of a real
comparator, f(§)=f ,(E-u,), where y, is indicative of the
mean value of x(t) in a moving window w of the width T
much greater than T, and the width parameter 1, is indicative
of'the signal’s deviation around 1, (on a similar time interval).
For example,

(36)

&=F €~ ) @D
(1) = wr(D) = x(1)

pa0) = 2w (02220 — 10

[0134] Then an equation for the adaptive explicit analog
rank locator can be rewritten as
Dyt @+, o' iy #0008 ag @ D=4/, (39)
where
- _ wel@={K@faply —x01} (39
o0 = e ) # K@)
and
- _ we@ = {K@Faply -1 40)
0= 0K
[0135] Note that the improper integral of equation (33) has

become an integral over the finite interval [0, 1], where the
variable of integration is a dimensionless variable y.

[0136] FIG. 22 illustrates the performance of adaptive
EARLs operating as amplitude (panel b)) and counting (panel
(c)) rank filters in comparison with the ‘exact’ outputs of the
respective analog rank filters given by equation (D-6).
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Discrete-Threshold Approximation to Adaptive EARL Given
amonotonic array of threshold values between zero and unity,
the integral in equation (38) can be evaluated in finite differ-
ences leading to a discrete-threshold approximation to adap-
tive EARL as follows:

D, (0=m0+f,07' D), @41
where D, is the root of ®(D, t)=q. For example,

qul/z(Djl+Dj2), where 0=D,=1 is a monotonic array of
threshold values, D,<D,, , and j, and j, are such that ®(D; ,
0=q<®D;,,, 1) and ®(D,,, )<q=P(D,,,,.t). Note that a
binary search, as well as more effective methods, can be used
for the root finding, and thus the discrete-threshold approxi-
mation to adaptive EARL can have significant advantages
over the state-of-art numerical algorithms for rank filtering,
especially when operating on large time scales.

Discrete-Threshold Approximation to AARF It is worth
pointing out that the invariance of rank to a monotonic trans-
formation allows us to define the following discrete-threshold
approximation to an adaptive analog rank filter:

KDl - FaplDy() =20} “2)

D) = ,
0= T = 1K) fyp [0 — X0

where D, ()=3Dk(t)=0D nint(D,_(t)/dD),* and 8D<<AD.
8 The nearest integer function nint(x) is defined as the integer part of x+%%,
nint(x)=[x+%% .

4.3 Example: Bimodal Analog Sensor Interface
System (BASIS)

[0137] BASIS constitutes an analog signal processing
module, initially intended to be coupled with a photon count-
ing sensor such as a photomultiplier tube (PMT). The result-
ing integrated photodetection unit allows fast and sensitive
measurements in a wide range of light intensities, with adap-
tive automatic transition from counting individual photons to
the continuous (current) mode of operation. When a BASIS
circuit is used as an external signal processing unit of a
photosensor, its output R (1) is a continuous signal for both
photon counting and current modes, with a magnitude pro-
portional to the rate of incident photons. This signal can be,
for example, used directly in analog or digital measuring
and/or control systems, differentiated (thus producing con-
tinuous time derivative of the incident photon rate), or digi-
tally sampled for subsequent transmission and/or storage.
Thus, BASIS converts the raw output of a photosensor to a
form suitable for use in continuous action light and radiation
measurements. The functionality of the BASIS is enabled
through the integration of three main components: (1) Analog
Counting Systems (ACS), (2) Adaptive Analog Rank Filters
(AARF), and (3) Saturation Rate Monitors (SRM), as
described further. The BASIS system provides several sig-
nificant advantages with respect to the current state-of-art
signal processing of photosignals. Probably the most impor-
tant advantage is that, by seamlessly merging the counting
and current mode regimes of a photosensor, the output of the
BASIS system has a contiguous dynamic range extended by
20-30 dB. This technical enhancement translates into impor-
tant commercial advantages. For example, the extension of
the maximum rate of the photon counting mode of a PMT by
20 dB can be used for a tenfold increase in sensitivity or speed
of detection. Since sensitivity and speed of light detecting
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units is often the bottleneck of many instruments, this
increase will result in upgrading the class of equipment at a
fraction of the normal cost of such an upgrade.

[0138] In addition, the analog implementation of the cur-
rent mode regime reduces the overall power consumption of
the detector. These capabilities will benefit applications deal-
ing with light intensities significantly changing in time, and
where autonomous low-power operation is a must. One par-
ticular example of such an application is a high sensitivity
handheld radiation detection system that could be powered
with a small battery. Such a compact detector could be used
by United States customs agents to search for nuclear mate-
rials entering the country.

Principal components (modules) of BASIS As shown in FIG.
23, the principal components (modules) of the BASIS can be
identified as (I) Rank Filtering (or Baseline) Module, (II)
Analog Counting Module (ACM), (III) the Saturated Rate
Monitor (SRM), and (IV) Integrated Output Module. A brief
description of these modules is as follows.

Rank Filtering (or Baseline) Module As shown in FI1G. 23, the
Baseline Module outputs the rankfiltered signal D,(t; T),
which is the qth quantile of the signal x(t) in a moving time
window of characteristic width T. The rank filtering is accom-
plished by means of an Adaptive Analog Rank filter (AARF)
(see §4.1), or its single-point version referred to as a Single
Point Analog Rank Tracker (SPART) (ibidem). AARFs, due
to their insensitivity to outliers, are essential for stable opera-
tion of BASIS, and are used to create, maintain, and modify
its analog control levels (the control levels of the comparators
in the Threshold Domain Filter). For example, a baseline
created by an AARF operating as a median filter (i.e., qg=12)
will not significantly change its value unless the photoelec-
tron rate exceeds about half of the saturation rate R, ... Onthe
other hand, this baseline will track the changes in the noise
level, providing an effective separation between noise and the
photosignal.

[0139] When the photoelectron rate exceeds the saturation
rate R, ., the output of the AARF itself will well represent the
central tendency of the photosignal, and thus will be propor-
tional to the incident photon rate. In the “transitional’ region
(around R, .. ), the output of the BASIS can be constructed as
a weighted sum of the outputs of AARF and ACM. Thus the
total output of BASIS can be constructed as a combination of
the outputs of AARF, ACM, and SRM, and calibrated to be
proportional to the incident photon rate.

Analog Counting Module (ACM) This module produces a
continuous output, R(t), equal to the rate of upward zero
crossings of the difference, x(t)-rD,(t; T), in the time win-
dow, w(t), given by

“43)

d
R(D) =w()= R(1) = w= thO(x —rDg)

5
+

where R (1) denotes the instantaneous crossing rate (Nikitin et
al., 2003). The value of the parameter r generally depends on
the distribution of the photosensor’s noise in relation to the
single photoelectron distribution of the photosensor, and can
normally be found either theoretically or empirically based
onthe required specifications. This parameter affects the ratio
of the false positive (noise) and the false negative counts
(missed photoelectrons) and allows us to achieve a desired
compromise between robustness and selectivity. In the sub-
sequent simulated example (see FIG. 25), the quantile param-
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eter q=%2 (AARF operating as a median filter), and r=6. An
attractive choice for the time averaging filter w(t) is a
sequence of 3 RC-integrators with identical time constants
1=T/6, which will provide us with rate measurements corre-
sponding to the time averaging with a rectangular moving
window of width T (Nikitin et al., 2003).

[0140] The main advantage of the analog counting repre-
sented by equation (43) is a complete absence of dead time
effects (see Nikitin et al. 2003). In addition, the baseline
created by an AARF will not be significantly affected by the
photoelectron rates below approximately (1-q) R, ., (half of
the photosensor saturation rate for a median filter). Thus the
maximum measured rate is limited only by the single electron
response of a photosensor. This is at least two orders of
magnitude higher than the current state of the art photon
counting systems. For example, in the simulation presented in
FIG. 25, the FWHM ofthe single electron response is about 1
ns, and the saturation rate of photon counting is about 3x10®
s™'. Since the signal-to-noise ratio is proportional to the
square root of the rate, the 20 dB increase in the photon
counting rate translates into a tenfold increase either in the
sensitivity or the speed of detection.

Saturation Rate Monitor (SRM) The SRM produces a con-
tinuous output R, . (t) equal to the rate of upward zero cross-
ings of the difference x(t)-D, ,(t; T) in the time window w(t),

“4)

d
Rnax0) = w| —0(x ~ D)

L+

As was theoretically derived by Nikitin et al. (1998), R, is
approximately equal to the maximum rate of upward (or
downward) crossings of any constant threshold by the pho-
tosensor signal x(t). When the photoelectron rate A, of a
photosensor is much smaller than R, .., the pileup effects are
small, and the photosensor is in a photon counting mode.
When A,;, >R, ... the photosensor is in a current mode.
[0141] Thus monitoring R, allows us to automatically
handle the transition between the two modes. The horizontal
gray line in panel I of FIG. 25 shows the measured R, as a
function of the photoelectron rate A, . The measured satu-
ration rate is also shown by the horizontal thin solid lines in
the lower half of panel III of FIG. 25.

Integrated Output Module As shown in FIG. 24, the output
module of BASIS combines the outputs of the ACM, SRM,
and AARF into a single continuous output R, (t). The mag-
nitude of R , (1), for both the photon counting and the current
modes, is proportional to the rate of incident photons. This
signal can be, for example, used directly in analog or digital
measuring and/or control systems, differentiated (thus pro-
ducing continuous time derivative of the incident photon
rate), or digitally sampled for the subsequent transmission
and/or storage. For the simulated example shown in FIG. 25,
R, (t) was chosen as the following combination of D (t; T),
R(t), and R,,,.(t):

R {)=R@+BD DS ap/BD (& T)~YR )]s 45)

where { is a calibration constant, AD=aR,,, ., a being a small
number (of order 107"), and y~V% is a quantile constant. The
Integrated Output Module thus includes the ‘transitional’
region between the photon counting and the current modes
(shaded in gray in FIG. 25), currently unavailable, into a
normal operational range of a photosensor, extending by ~20
dB the photosensor’s contiguous dynamic range.
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Simulated examples of light measurements conducted by
PMT with BASIS unit FIG. 25 provides a simulated example
of the performance of BASIS used with a PMT. In the simu-
lation, a fast PMT was used (the FWHM of the single electron
response is about 1 ns), and the noise rate was chosen to be
high (order of magnitude higher than the PMT saturation
rate). Panel I of the figure shows the output of BASIS (R, ,
thick solid black line) as a function of the photoelectron rate
Apy 5. along with the outputs of the Saturation Rate Monitor
(R, s0lid gray line), Rank Filtering Module (D, ,,, dashed
line), and Analog Counting Module (R, thin solid black line).
Panel II shows (by gray lines) 1 ps snapshots of the PMT
signal for the photoelectron rates much smaller (left),
approximately equal (middle), and much higher (right) than
the saturation rate of the PMT. This panel also shows (by the
black lines) the respective outputs of the Rank Filtering Mod-
ule D, ,(1), and the baseline levels rD, ,,(t) used in the Analog
Counting Module (r=6 in the simulation). The instantaneous
crossing rates R (t) are also shown (top), and the time constant
T of AAREF is indicated in the lower left corner of the panel.
Panel I11 illustrates the relation between the noise and photo-
signal used in the simulation by depicting the accumulated
amplitude and counting distributions of the PMT signal.
These distributions are shown for three chosen photoelectron
rates Az, in their relation to the outputs of the Rank Filtering
Module (D, ,) and the Saturation Rate Monitor (R,,,,,). The
resolution AD of the acquisition system used for measuring
the distributions is indicated in the panel.

[0142] FIG. 26 provides a simulated example of a modifi-
cation of BASIS designed for detection of fast changes in a
light level. The light signal corresponding to this model can
be, for example, an intensity modulated light signal passing
through a fiber, or fluorescence of dye excited by an action
potential wave propagating through a biological tissue. The
gray line in the lower panel of the figure shows the time-
varying light signal (square pulses). The higher light level
corresponds to the photoelectron rate of about 2x10° photo-
electrons per second. The width (FWHM) of the single elec-
tron response of the photosensor is about 1 ns, and the result-
ing photosensor electrical signal x(t) is shown by the gray line
in the middle panel.

[0143] As canbe seen in the figure, the low signal-to-noise
ratio makes fast and accurate deduction of the underlying
light signal difficult. The circuit shown at the top of FIG. 26,
however, allows reliable timing of the onsets and offsets of the
light pulses with better than 10 ns accuracy. The output of the
circuit D (t; T,) is shown by the black line in the lower panel
of the figure. In the example, the quantile parameters of the
rank filters are q,=%4 and q,%, and the baseline factor is
r=1.5. The parameter r allows us to adjust the circuit for
optimal performance based on the difference between the low
and high light levels.

5 Generation of Monoenergetic Poissonian Pulse
Trains

[0144] As another illustration of the current invention, con-
sider a technique and a circuit for generation of monoener-
getic Poissonian pulse trains with adjustable rate and ampli-
tude. Generators of such pulse trains can be used, for
example, in testbench development and hardware prototyp-
ing of instrumentation for nuclear radiation measurements.

Idealized model of a Poisson pulse train generator An ideal-
ized process producing a monoenergetic Poissonian pulse
train can be implemented as schematically shown in FIG. 27.
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Consider a stationary random pulse train Z x,0(t-t,), where x,
are the amplitudes of the pulses with the arrival times t,. This
pulse train is filtered by a linear time filter with a continuous
impulse response w,.(t), where At is the characteristic
response time of the filter. An example of such a response
would be the bipolar pulse w , ()=[t/AT>~t*/(2AT*)]e~"270(1),
where 0 is the Heaviside unit step function. The output x(t) of
the linear time filter can be written as

x(1) = ZXiWAr(l—li), “6)

i

and is a continuous signal. The instantaneous rate of upward
crossings Nikitin et al. (2003) of a threshold D by this signal
can be written as

d 47
RD.0 = | Lot -D)| = Y o1, “n
o

where t; are the instances of the crossings (that is, x(t,)=D and
%(t)>0). As was discussed in Nikitin (1998), the pulse train
given by equation (47) is an approximately Poissonian train
affected by a non-extended dead time of order R, , ~*. Thus,
when the average rate R(D)=<R (D, t)>,is much smaller than
the saturationrate R, _, R (D, t) will provide a good approxi-
mation for a monoenergetic Poissonian pulse train of the
average rate R(D).

[0145] When either M,=0 or W, ,=0, then, as was shown in
Nikitin et al. (1998), the average rate of the upward crossings
of a threshold D by the signal x(t) can be expressed as

RD) = Rmaxexp[_ %(2)2} 48)

and thus the rate of the generated pulse train can be adjusted
by an appropriate choice of the threshold value D.

[0146] Practical implementation of a Poisson pulse train
generator The idealized process described above is not well
suited for a practical generation of a Poissonian pulse train,
since, as can be seen from equation (48), at high values of the
threshold D the rate of the generated train is highly sensitive
to the changes in D. To reduce this sensitivity, one can pass the
signal x(t) through a nonlinear amplifier, e.g., an antilogarith-
mic amplifier as shown in FIG. 27, thus transforming x(t) into
the signal y(t)=exp [x(t)/0]. Then the average rate of the
upward crossings of a threshold D by the signal y(t) can be
written as

R(D) = Rmexp{— % [1n(§)]2}, @)

which is much less sensitive to the relative errors in D.

[0147] FIG. 28 illustrates a simulated performance of an
idealized monoenergetic Poisson pulse generator shown in
FIG. 27. The upper panel of FIG. 28 shows the output pulse
rates as a function of threshold, and the lower panels show the
distributions of the pulses’ interarrival times for the generator
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set at two different threshold values. In the figure, the black
solid lines show the theoretical curves, and the gray solid lines
show the respective results of the simulations.

6 Additional Practical Implementations and
Applications of Analog Rank Filters in Continuous
Time Windows

[0148] As discussed in Nikitin and Davidchack (2003b), a
quantile, or rank filter of order q, O<q<l, in an arbitrary
moving time window w such that w(t)=0and [ _,"ds w(s)=1,
can be given by the function D (1) defined implicitly as

[ " dsw(t-5)8[D ,(1)-x(s)]=w(®)*6[ D ~x(2)]=q, (50)

where 0 is the Heaviside unit step function and the asterisk
denotes convolution. It was also shown in Nikitin and David-
chack (2003b) that when the time window w can be expressed
as’

“Note that h_ in equation (51) describes the impulse response of an RC inte-
grator with RC=t.

w(t) = [éexp(— ; )0(:)] wwy (D) = he(D) = wy (D), o

then an explicit (albeit differential) equation for D (t) can be
written as

dDg _ q—wy(0)#8[Dg —x(1)] (52)
dr ~ d oD :
™7, 001D, — 50

[0149] The solution of equation (52) is ensured to rapidly
converge to D, () of the chosen quantile order q regardless of
the initial condition. However, there are several obstacles to a
straightforward implementation of the filter given by this
equation. One is that the convolution integrals in its right-
hand side need to be re-evaluated (updated) for each new
value of D, . Another obstacle is the fact that the denominator
in the right-hand side contains the derivatives of the Heavi-
side unit step function and thus may assume zero values or
singularities, rendering a circuit implementation impossible.
Indeed, the derivative of 6[D,—x(t)] with respect to D, is
expressed by the Dirac 8-function 8[D,—x(t)]. The latter can
beinturn expressed as (see Davydov, 1988, p. 610,eq. (A 15),
for example)

0 -1) 63

01Dy =] = 3, Toear

where IX'(t,)| is the absolute value of the signal derivative at t,,
and the sum goes over all t, such that x(t,)=D,. Thus the
denominator in equation (52) can be re-written as

wit —1;) 54)

d
T——1{w()x0[Dg —x(D]} =7 ; (@)

D,

which can be zero or a singularity. I[f we wish to implement an
analog rank filter in a simple feedback circuit, then we should
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replace the right-hand side of equation (52) by an approxi-
mation which can be easily evaluated by such a circuit.

6.1 Modified Practical Approximation of Rank Filter
in Arbitrary Continuous Time Window

[0150] First, let us consider rank filters of orders g=d,
defined implicitly as
w(t)*6[D,.~x(1)]=q=0q, (53)

where 0<dq<<q. Clearly, D,_=D,,, and we can assume that
lim,,,_., (D,,~D, )=0. Thus we can write:

w(t) #8[Dy — x(1)] - (56)
d . w(t)#0[Dy_ — x(1)]
D, ———{w(0)x0[D; — x(D]} = 62% W
- lim —24
5g-0 Dy — Dy
28q
and
(1))

1
Dy(n) = E[Dﬁ(t) + Dy (1]

[0151] Second, let us assume that the time window w(t) is
represented as a weighted sum of N RC integrators with
1=RC, namely as

N-1 (58)
W) = he(0) ey () = hel0)x ) wiedt = 1),

k=0

where 2, w,=1.

[0152] Third, instead of ideal comparators expressed by the
Heaviside unit step functions, we will use more realistic com-
parators given by

FID(]~(S,~S)O[D~x(1)]+5.. (59)

where S, and S_ are high (‘positive’) and low (‘negative’)
supplies, respectively. Further, we can set S,=—S_=S, and
thus

F1D~x(0)|=Ssgn Dy-x(1). (60)

Itis worth pointing out that, in practice, dq of order 1072 (1%)
should be sufficient for a good approximation of a rank filter.
Thus, even though we use the Heaviside unit step function
and signum function notations in equations (59) and (60),
respectively, the comparator gain can be actually relatively
small (of order 8q~*~100).

[0153] Combining equations (52) and (56-60), we arrive at
the following approximation to a rank filter in a continuous
time window w(t) given by equation (58):

1 61)
Dy(0) % 5[0y 1)+ Dy (1)

S(2g—-1+25g) —
1 N-1
Dy (n) = ?fdt ZW/(T Do () — x(t — 0] G X6D, (1),
0Dg(1) = Dgy (5) = Dy (1),
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where G=T (4tdq)~". This equation can be easily imple-
mented in a feedback circuit as illustrated in FIG. 29. One
skilled in the art will recognize that this circuit is a simplified
embodiment of a more general implementation depicted in
FIG. 30.

[0154] As shown in FIG. 30, an input variable x(t) and a
plurality of feedbacks of Offset Rank Filtered Variables {D
(1)} are passed through a plurality of delayed comparators
forming a plurality of outputs of the comparators {#,%(t)}={
£.,.,7D (D]}, (Please note that a double line in the
diagram indicates a plurality of signals.) Said plurality of the
outputs of the comparators {£,%} is used to form a plurality
{A(2q,-1)-%,%"} of differences between said outputs of the
comparators and the respective Offset Quantile Parameters of
said Offset Rank Filtered Variables. The plurality of the feed-
backs of the Offset Rank Filtered Variables {D, (1)} is used to
form a weighted difference 8D, (1)=Z,8,D, (1), Where 2.8,-0,
of said feedbacks. Each drfference A(2ql 1)-%,%" between
the outputs of the comparators and the respective Offset
Quantile Parameters of the Offset Rank Filtered Variables is
multiplied by an amplified weighted difference GOD,(t) of
the feedbacks of the Offset Rank Filtered Variables, forming
a plurality of time derivatives of Offset Rank Filtered Vari-
ables {B, (1)}. Said plurality of the time derivatives {B®, (1)} is
1ntegrated to produce the plurality of the Offset Rank Frltered
Variables {D, (t)}. The plurality of the Offset Rank Filtered
Variables {D (t)} is then used to form an output Rank Frl-
teredVarrable D (D) as a weighted average 2, w,D, (1), Z,w

of said Offset Rank Filtered Variables. “

Analog Rank Selectors As was discussed previously in this
disclosure, while a rank filter operates on a single scalar input
signal x(t) and outputs a qth quantile D (t) of the input signal
in a moving window of time, a rank selector operates on a
plurality of input signals {x,(t)}, i=1, . . . , N, and outputs
(‘selects’) an instantaneous qth quantile D_(t) (in general, a
weighted quantile) of the plurality of the input signals. Such
transition from a filter to a selector can be achieved by replac-
ing the delayed comparators in an ARF by averaging com-
parators.

[0155] As shown in FIG. 31, a plurality of input variables
{x,0},j=1, ..., N, and a plurality of feedbacks of Offset
Rank Selected Variables {D, (1)} are passed through a plural-
ity of averaging comparators forming a plurality of outputs of
the comparators {#,"*()}={F.p"[D, 1), X,(O]}=

N
{Z viF ap[Dg; (1) - xjm]}-

J=1

Said plurality of the outputs of the comparators {#,°} is
used to form a plurality {A(2q,-1)-#,} of differences
between said outputs of the comparators and the respective
Offset Quantile Parameters of said Offset Rank Selected Vari-
ables. The plurality of the feedbacks of the Offset Rank
Selected Variables {D, (t)} is used to form a weighted difter-
ence 0D, (1)=Z,3,D (t) where 2,p,=0, of said feedbacks.

Each difference A(2ql 1)-#, between the outputs of the
comparators and the respective Offset Quantile Parameters of
the Offset Rank Selected Variables is multiplied by an ampli-
fied weighted difference G3D,(t) of the feedbacks of the
Offset Rank Selected Variables, forming a plurality of time
derivatives of Offset Rank Selected Variables {B, ()}. Said
plurality of the time derivatives {B, (t)} is 1ntegrated to pro-
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duce the plurality of the Offset Rank Selected Variables {D, .
(0}. The plurality of the Offset Rank Selected Variables {D,,
(0} is then used to form an output Rank Selected Variable
D, (t) as a weighted average Z,w,D,_ (1), Z,w,=1, of said Offset
Rank Selected Variables.

[0156] Median filters for noise suppression in broadband
applications A median (q="2) filter is of a particular practical
interest since, due to its insensitivity to outliers, it is more
effective for filtering impulse noise than any type of an aver-
aging (low-pass) filter.

[0157] When used for noise suppression, the time window
w(t) should be chosen as wide as possible without significant
distortion of the underlying (‘noise-free’) signal. A sensible
choice for a measure of the width of the window for a median
filter is the median width t,,, as defined in (Nikitin and David-
chack, 2003a, p. 45):

=] _o0 A0 (1)~ w,,], (62)

where w” is defined implicitly as

d 1 (63)
f dw(D)f[w(r) —wy,] = 3

[0158] Let us first consider two time windows: (i) the tra-
ditional boxcar time window

1
win) = Br(@) = 7[00 - 0 =T,

and (ii) the exponential time window

1 r
w0 = he(0) = —exp(~= Jot),

and examine the attenuation of a purely harmonic input by
median filters with these two widows. As can be seen in FIG.
32, the approximate 3 dB cut-off frequency £, for a harmonic
signal can be expressed as 0.606 T~ and 0.329 tv~* for the
boxcar and the exponential windows, respectively. Then the
respective values of the median width are t,=T=0.606f.7!,
and t,,=t In 2=0.228f ~*.

One- and two-delay approximations of a median filter Note
that a single h_(t) time weighting function (w,=3(t) in equa-
tion (58)) is not a good choice due to its narrow width as well
as the asymmetry. We can approximate an arbitrary time
window w(t) by h_ (t)*w,(t) as in equation (58), provided that
N is sufficiently large and r is sufficiently small.'® A simple
practical choice would be to set w,=1/N and t,=kAt, and, to
insure certain symmetry of the time window, to require that
the median and the mean of the time weighting function w(t)
coincide.'! Then the parameters T and At in equation (58) can

be expressed as

19Since a moving time window is always a part of a convolution integral, this
approximation is understood in the sense that w(t)*g(t)=h (t)*wx(t)*g(t),

where g(t) is a smooth function.

! Note that equating the mean and the median is equivalent to setting the
second Pearson’s skewness coefficient (see Kenney and Keeping, 1962, p.

101-102, for example) to zero.
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T i Argen T (64)
T iN—Le AT T N e

were T is the width of a boxcar time window with the same
mean and median, and a is given implicitly by

f\H——N—;a]r (65)
dmw(r) =
0

= N-2k-1 N-2k-1 1
[1 - exp(—l - 3 w]]@(l + w] ==
=

=l -

Note that o is a multivalued function of N. FIG. 33(a) plots
the values of o for several values of N, and FIGS. 33(b) and
33(c) show the time windows for minimum and maximum
values of a, respectively, in comparison with a boxcar time
window with the same mean and median.

[0159] Approximations with large N are impractical since
they require a large number of delay lines (N-1) and com-
parators (2N) for their implementation. The increase in the
component count will also introduce additional noise and
other distortions into the output of the filter. Thus sensible
practical choices of the time windows for the median filter are
a one-delay (N=2) window w(t)=2h (1)*[d()+d(t-AD)],
where At=2tcosh™'(e/2)~1.6480t, and a two-delay (N=3)
window w(t)=Y4h (0)*[3()+3(t—T)+8(t-27)]."* In terms of the
approximate 3 dB cut-off frequency f for a harmonic signal,
the delay time At can be expressed as At=0.274f ~'=(3.65
£)™" and At=0.1515 £.7'=(6.6 £.)™" for one- and two-delay
median filters, respectively.

12 For N=3, the values of a are 0.9963 and 1.0240.

One-delay median filter circuit The analog median filter
(AMF) shown in FIG. 34 is described by the following equa-
tions:

(66)

Dy(0) = 5 [Dynr (1) + Dy ()],

1

2
and

Dis (1) = 67
1 F (Do () — x(©)] + }]

— dl‘i [GXx6D,,(1)] X(i oU - W{
RC A F Dy (1) — x(2 — A1)

[0160] With the approximate constraints on the multiplier
as ~A=(X,—X;), X3 =A, and on the signal as ~-U=x(t)=U, the
parameters in equation (67) are as follows:

A (68)
W=

35
SU = 2Adq,

A
RC = 0.6068Ar—,
au

and
A2
Y= 300
A
= TeUsq

where 8q~1072<<1. Then the circuit shown in FIG. 34
approximates a median filter in the time window shown in the
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upper left corners of FIGS. 33(b) and 33(c), with the approxi-
mate 3 dB cut-off frequency f ~(3.65 At)~*. FIG. 35 shows the
attenuation and the phase sift of a purely harmonic signal
filtered by a circuit implemented according to equations (66)
through (68).

[0161] When the frequency of the input harmonic signal
approaches the cut-off frequency £, the non-linear distortions
increase significantly. This is illustrated in FIG. 36 which
shows inputs and outputs of the filter for several different
frequencies. However, as can be seen from FIG. 37, the fre-
quencies of any noticeable higher harmonics of the distorted
output lie at the frequencies above f.. Thus they can either be
ignored (for example, if the signal is subsequently demodu-
lated), or filtered out by a low-pass filter (for example, for
audio applications).

Qualitative estimate of the noise suppression efficiency Let us
develop an order of magnitude estimate of the efficiency of
the filter for suppression of the impulse noise in a lossy
transmission line. Consider a random noise signal filtered by
a linear filter with an impulse response h(t):

kil (69)
x(0) = h(t)* Z X0 — 1),

i=0

where §(x) is the Dirac 8-function Dirac (1958) and the aster-
isk denotes convolution. We will further assume, for simplic-
ity, a zero-mean noise (x,)=0 with a uniform rate density p,

& (70)
p= ﬁN(t, d) = const,

where N(t, d) is the total number of the noise pulses as a
function of time and the distance from the receiver.

[0162] As discussed in more detail in Rice (1944) and
Nikitin et al. (1998), when the arrival of the noise pulses
x,0(t-t,) is a Poisson process with sufficiently high rate, the
expected (saturation) rate A of upward crossings of the mean-
value threshold X by x(t) can be expressed as

7D

x| (2 0)

- [(hz(t))r

1
_ [(fZW(f»r
oy |

where the dot over h denotes the time derivative, w=w(f) is the
frequency power spectrum of h(t), and the angular brackets
denote the integration from zero to infinity.

[0163] The frequency response of a lossy transmission line
is given by
H({fy=e T (72)

where fis the frequency, 1 is the length of the line, and k is the
line constant. Therefore for a high rate noise originating the
distance d from the receiver the average crossing rate of the
received noise will be

Oct. 15, 2009

2430 73)

d) = Gar

Efficiency threshold The average width of a single noise pulse
can be roughly estimated as (2X)~"!, where A is the saturation
upward crossing rate. The median filter will have a high
efficiency in suppression of the noise when the noise rate is
low (i.e. when the average width of a single noise pulse is
much smaller than the average interarrival time of the pulses),
and when the half-width of its window is much larger than the
average width of a single noise pulse. Expressing the half-
width of the filter window in terms of its approximate 3 dB
cut-oft frequency for a harmonic signal f,, these two condi-
tions can be written as A(d)>>max(pd, 1.7f.). Using equation
(73), we can rewrite these conditions as

_L 21 (74)
d<dy= mi,{z.54k’1 fe 2,2.20k73 p*s]

2 1
{ 222k73p73 for p=po

2 _L
2.22k73py>  otherwise,

where p,=0.668xkf *?is the critical noise rate density, and d,,
is the efficiency threshold with the following interpretation:
[0164] For d<<d, the efficiency of the filter for suppression
of the impulse noise is high, and for d>>d, the efficiency is
low.

[0165] Note that the efficiency threshold was estimated
under the assumption that the noise originates at the transmit-
ter. For a distributed noise, the threshold will be higher.
Noise suppression efficiency above efficiency threshold For
the distances from the transmitter to the receiver larger than
the efficiency threshold, the noise suppression efficiency of
the filter in the passband [0, f] can be approximately
expressed as follows:

fd dlffcdfefwfi 5)
Hid) = 200 _ Flkrdo'fe ) — FkdV £ )
Jediffed ey L-Favf)
where
2 _
F(x) = )7[1 —e (1 +x)]

and r is a positive constant of order unity. Note that for low
noise

rates such that p=p,, the limit of H(d) for large d approaches
~[-6.51+5.62(1-r)]dB.

[0166] FIG. 38 illustrates the noise suppression efficiency
of a single-delay median filter. In the figure, the efficiency
threshold is shown by the white line, the contour lines accord-
ing to the qualitative estimate are drawn by the dashed lines,
and the experimental (through numerical experiment) effi-
ciency shown in grayscale. The numerical values for the cable
length and the noise rate densities are given for a typical
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twisted pair phone cable with k=~4.6x10~° m~'Hz /2 and the
filter with the cut-off frequency 1.3 MHz.

Multicarrier modulation example FIG. 39 illustrates the util-
ity of AMFs in broadband applications. Panel I(a) shows the
transmitted multicarrier signal modulated by the levels shown
in panel I1(a). Passing through the transmission line, the sig-
nal acquires noise containing a certain amount of narrow
‘spikes’ of the duration shorter than the width of the time
window of the median filter. Such spikes will affect the car-
riers in all transmitted range of frequencies and, if the level of
the noise is high, the demodulation of the signal at the receiver
(black bars in panel I1(b)) will lead to the result different from
the transmitted modulation (gray bars). However, a wide-
band amplifier followed by an AMF will suppress the spikes
(panel I(c)), enabling accurate demodulation (panel II(c)).

6.2 Comb (Bandpass) Rank and Median Filters

[0167] Consider the following time window of a rank filter:

1 (76)
WO = he(0)x P
k=0

[0168] As was shown in this disclosure, when T is of order
At or larger, for a harmonic input a median filter acts essen-
tially as a lowpass filter. However, there might be additional
transmission maxima at frequencies approximately equal to

k

Art.
o1

When the value of T becomes smaller than approximately one
third of At, the additional transmission passbands become
pronounced, especially at the frequencies which are multiples
of A", Thus rank filters with such time windows can be
viewed as comb, or bandpass filters and can be used for noise
suppression in carriers at those frequencies. We may use the
acronyms AMCF and AQCF for the median and quantile
(rank) comb filters, respectively. If the suppression of other
frequencies is desired (in order, for example, to eliminate
nonlinear distortions when filtering a harmonic carrier), this
can be achieved by preceding a rank filter by a highpass filter
and following by a lowpass filter, as illustrated in FIG. 40. The
figure shows the attenuation of purely harmonic signals by
two different median comb filters with time windows indi-
cated in the upper right corners of the two panels in the figure.
The dashed lines show the responses of the rank filters alone,
and the filled areas under thick solid lines indicate the
responses of the ‘highpass-rank-lowpass’ combinations.
Note that a highpass filter preceding the rank filter does not
significantly broaden narrow noise pulses, and those pulses
are thus suppressed by the subsequent rank filtering.

[0169] FIG. 41 provides an illustration of using AMCF for
noise suppression in a single carrier signal. The top row of the
panels shows a single frequency carrier transmitting a mes-
sage using a QAM scheme. In the second row, strong noise is
added to the carrier signal. As can be seen from the panel in
the middle of the row, most of the noise power is located in a
relatively narrow passband around f,, and the total noise
power is about hundred times larger than the signal power. As
the result, the demodulated signal (black bars) is significantly
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different from the transmitted modulation (gray bars). When
the carrier signal is filtered with a linear narrow band filter
(such as, for example, a traditional comb filter with the time
window indicated in the upper left corner of the left panel in
the third row), the noise power at the frequency f, remains
high (middle panel in the third row), and the quality of
demodulation does not improve (right panel in the third row).
A median comb filter with the same time window, however,
removes most of the noise at all frequencies, enabling accu-
rate demodulation. This is shown in the bottom row of the
panels in FIG. 41. Note that the power spectrum of the carrier
without noise is shown by the filled gray areas in the panels in
the middle of the rows.

Comb Rank Filter as an Image Filter

[0170] There are numerous possible applications of comb
rank filters in many fields. One such area is real-time image
processing, for example processing signals from imaging
arrays such as CMOS or CCD arrays used in microchip video
cameras. Products that could benefit from such filters include
digital cameras from point-and-click consumer models to
high-end professional models, night vision equipment, digi-
tal video cameras including traditional formats and HDTYV,
video production and transmission equipment, scanners, fax
machines, copiers, machine vision systems for manufactur-
ing, medical imaging systems, etc. Analog comb rank filter
can be especially beneficial for surveillance cameras operat-
ing in real-time under high ISO (low-light or high speed)
conditions, as illustrated in FIG. 42.

6.3 Threshold Filter Demodulation

[0171] As discussed in §4, Analog Rank Filters can be used
for establishing and maintaining the analog control levels of
the Threshold Domain Filters. It ensures the adaptivity of the
Threshold Domain Filtering to changes in the measurement
conditions (e.g., due to nonstationarity of the signal or instru-
ment drift), and thus the optimal separation of the features of
interest from the rest of the signal. For example, the threshold
level D in the domain 6=0[x(t)-D]0[%(t)] can be established
by means of Analog Rank Filters to separate the stationary
points of interest from those caused by noise. When used in
the present invention, ARFs allow us to reconcile, based on
the rank filters’ insensitivity to outliers, the conflicting
requirements of the robustness and adaptability of the control
levels of the Threshold Domain Filtering.

[0172] For an illustration, let us consider a method for
signal demodulation depicted in FIG. 43. An input signal
consisting of one or more components is multiplied by a
demodulating signal consisting of one or more components.
The product s then filtered by a threshold filter, and the output
of the threshold filtering step is passed through a lowpass
(time averaging) filter to obtain a demodulated signal.

[0173] Sometimes the control level signal(s) of the thresh-
old filter can be set from an a priori knowledge. For example,
if a sine wave is modulated by a factor +ca, and then demodu-
lated by another sine wave, then the control level of the
threshold filter can be set to zero. In general, however, the
control levels of the threshold filter will depend on the modu-
lation scheme/alphabet, and on the conditions of the incom-
ing signal (e.g., its attenuation and the noise level) which
typically vary with time. Thus, to obtain the control levels of
the threshold filter, one can use an analog rank filter set at the
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quantile levels corresponding to the fractional values of the
various symbols in the modulation alphabet.

[0174] Consider, for example, the demodulation depicted
in FIGS. 44 and 45. The modulated signal is a mix of sine and
cosine waves of frequency f,,, each with three amplitude lev-
els maintained during the time intervals N f,~!, N=120 in the
example. The modulated signal is affected by an additive
random noise with most of its power located in a relatively
narrow passband around f,,, and the total noise power is about
hundred times larger than the signal power. The combined
incoming signal is shown in the upper panels of FIGS. 44 and
45. The second and third panels on the top of the figures show
the demodulating signal (a sine wave of frequency f,,) and the
product of the incoming and the demodulating signals,
respectively. In typical demodulation, the product is passed
through a lowpass filter to obtain the demodulated signal.
This is shown in the bottom panel of FIG. 44. One can see that
the demodulated signal is significantly different from the
‘ideal’ demodulated signal (gray line) obtained from a noise-
free incoming signal.

[0175] In FIG. 45, the third panel from the bottom shows
the product of the incoming and the demodulating signals
(gray line) and the control levels of the threshold filter (solid
black lines) obtained as the mean values of the outputs of an
analog rank filter with the time window of width approxi-
mately 30 N f,~! (dashed lines). The quantile levels of the
filter are set at Y2q,, q,+%2q,, and q, +q,+Y2q;, where q;, qs,
and q, are the average fractions of the modulation levels (each
approximately 3 in the example). The output of the threshold
filter (see the second panel from the bottom) is then passed
through a lowpass filter to obtain the demodulated signal
shown by the black line in the bottom panel. One can see that
the signal demodulated in accordance with the present inven-
tion is much closer to the ‘ideal” demodulated signal (gray
line) obtained from a noise-free incoming signal than the
signal demodulated without the threshold filtering step (bot-
tom panel in FIG. 44).

ARTICLES OF MANUFACTURE

[0176] Various embodiments of the invention may include
hardware, firmware, and software embodiments, that is, may
be wholly constructed with hardware components, pro-
grammed into firmware, or be implemented in the form of a
computer program code.

[0177] Still further, the invention disclosed herein may take
the form of an article of manufacture. For example, such an
article of manufacture can be a computer-usable medium
containing a computerreadable code which causes a com-
puter to execute the inventive method.
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We claim:

1. A method for signal processing wherein said signal
being processed is representative of a physical property, said
method operable to transform an input signal into an output
signal, comprising the steps of:
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a. forming a plurality of comparator outputs of a respective
plurality of comparators by passing said input signal and
a plurality of feedbacks of Offset Rank Signals through
a respective plurality of said comparators, said Offset
Rank Signals having Offset Quantile Parameters;

b. forming a weighted difference of said feedbacks of the
Offset Rank Signals;

c. forming a plurality of differences between the compara-
tors outputs and the respective Offset Quantile Param-
eters of said Offset Rank Signals;

d. forming a plurality of time derivatives of said Offset
Rank Signals by multiplying each of said plurality of
differences by said weighted difference;

e. producing the plurality of said Offset Rank Signals by
time-integrating said plurality of time derivatives; and

f. producing said output signal as a weighted average of
said Offset Rank Signals.

2. A method for signal processing as recited in claim 1

wherein said comparators are selected from the group con-

sisting of delayed comparators and averaging comparators.
3. A method for signal processing as recited in claim 1

wherein:

a. said comparators are selected from the group consisting
of delayed comparators and averaging comparators and
said plurality of outputs of said delayed comparators
consists of two outputs and said plurality of feedbacks of
said Offset Rank Signals consists of two feedbacks and
said plurality of said delayed comparators consists of
two delayed comparators;

b. said weighted difference is an amplified difference of
said two feedbacks;

c. said plurality of differences consists of two differences;

d. said plurality of time derivatives consists of two time
derivatives;

e. said plurality of the Offset Rank Signals consists of two
Offset Rank Signals; and

f. said weighted average of said Offset Rank Signals is an
average of said two Offset Rank Signals.

4. A method for image processing an image, said method

operable to transform an input image signal into an output

signal, comprising the steps of:

a. forming a plurality of comparator outputs of a respective
plurality of comparators by passing said input image
signal and a plurality of feedbacks of Offset Rank Sig-
nals through a respective plurality of said comparators,
said Offset Rank Signals having Offset Quantile Param-
eters;

b. forming a weighted difference of said feedbacks of the
Offset Rank Signals;

c. forming a plurality of differences between the compara-
tor outputs and the respective Offset Quantile Param-
eters of said Offset Rank Signals;

d. forming a plurality of time derivatives of said Offset
Rank Signals by multiplying each of said plurality of
differences by said weighted difference;

e. producing the plurality of said Offset Rank Signals by
time-integrating said plurality of time derivatives; and

f. producing said output signal as a weighted average of
said Offset Rank Signals.
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5. A method for image processing as recited in claim 5
wherein said comparators are selected from the group con-
sisting of delayed comparators and averaging comparators.

6. An apparatus for signal processing wherein said signal
being processed is representative of a physical property said
method operable to transform an input signal into an output
signal comprising:

a. a plurality of comparators each operable to form an
output, thus forming a plurality of outputs by passing
said input signal and a plurality of feedbacks of Offset
Rank Signals through said plurality of comparators, said
Offset Rank Signals having Offset Quantile Parameters;

b. a component operable to form a weighted difference of
said feedbacks of the Offset Rank Signals;

¢. a component operable to form a plurality of differences
between the outputs of said plurality of comparators and
the respective Offset Quantile Parameters of said Offset
Rank Signals;

d. a component operable to form a plurality of time deriva-
tives of said Offset Rank Signals by multiplying each of
said plurality of differences by said weighted difference;

e. a component operable to produce the plurality of said
Offset Rank Signals by time-integrating said plurality of
time derivatives; and

f. a component operable to produce said output signal as a
weighted average of said Offset Rank Signals.

7. An apparatus for signal processing as recited in claim 6

wherein:

a. said comparators are selected from the group consisting
of delayed comparators and averaging comparators and
said plurality of delayed comparators consists of two
delayed comparators and said plurality of outputs con-
sists of two outputs and said plurality of feedbacks of
Offset Rank Signals consists of two feedbacks;

b. said weighted difference is an amplified difference of

said two feedbacks;

said plurality of differences consists of two differences;

. said plurality of time derivatives consists of two time
derivatives;

e. said plurality of the Offset Rank Signals consists of two

Offset Rank Signals; and
f. said weighted average of said Offset Rank Signals is an

average of said two Offset Rank Signals.

. A method for signal demodulation comprising:

forming a product of an input signal consisting of one or

more components and a demodulating signal consisting
of one or more components;

b. filtering said product with a threshold filter to obtain a
threshold filtered product consisting of one or more
components, wherein a threshold domain of said thresh-
old filter is defined by a control level signal consisting of
one or more components; and

filtering said threshold filtered product with an averaging
filter to produce a demodulated signal consisting of one
or more components.

9. A method for signal demodulation of claim 8 wherein
said control level signal of the threshold filter is formed as a
combination of one or more components of a signal obtained
by filtering said product of the input signal and the demodu-
lating signal with an analog rank filter.
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