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METHOD FOR ANALYSIS OF LINE OBJECTS

[0001] This non-provisional application claims the benefit
of United States Provisional Patent Applications No. 60/553,
664 entitled “Method for human handwriting characteriza-
tion, identification, and comparison” filed on Mar. 16, 2004,
and No. 60/574,824 entitled “Analog approach to analysis
and modeling of biometric information” filed on May 27,
2004, which are incorporated herein by reference in their
entirety.

COPYRIGHT NOTIFICATION

[0002] Portions of this patent application contain materials
that are subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

TECHNICAL FIELD

[0003] The present invention relates to methods for con-
ditioning, representation, modeling, characterization, iden-
tification, comparison, and analysis of variables. In particu-
lar, this invention is specially adapted for analysis of line
objects such as, for example, human handwritten signatures.
This invention also relates to generic measurement systems
and processes, and to methods and corresponding apparatus
for measuring which extend to different applications and
provide results other than instantaneous values of variables.
The invention further relates to post-processing analysis of
measured variables and to statistical analysis.

BACKGROUND ART

[0004] Line objects Many objects in biometrics, network-
ing, signal analysis, and many other fields related to repre-
sentation of physical phenomena as well as behavioral
characteristics of individuals can be classified as line (con-
tour) objects. In general, a line object can be viewed as a
piecewise continuous curve (a collection of continuous
segments) with a collection (vector) of some values (‘fea-
tures’) associated with each point of this curve. The feature
vector can carry additional information describing the line
object such as, for example, line density, color, the speed of
writing and the exerted pressure along the drawn line, and
other characteristics contingent on the physical nature of the
object and the data acquisition device. Depending on the
nature of a line object, the components (features) of the
feature vector can be classified as geometric, static, kine-
matic, dynamic, and other features. For example, in net-
working, the infrastructure of a communication or transpor-
tation network can be presented as a line object which
carries geometric information about the layout of the net-
work (nodes and communication and/or transportation
lines), and kinematic and dynamic information such as
routes of individual particles and more general characteris-
tics of capacity, throughput, and traffic. Note that, even
though the composition of the feature vectors varies among
different line object, all line objects have common infra-
structure which is a piecewise continuous curve.

[0005] Inadequacy of representation of line objects in
background art In the background art, the line objects are
commonly represented by discrete (digital) records, and/or
in a manner which is not independent of choice of coordi-
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nates and/or parameterization. Also, the representations of
the known art are limited in their ability to be invariant with
respect to those properties of line objects which are of little
or no relevance to the characterization, identification, and
comparison of line objects. The background art lacks a
systematic approach to construction of such invariant rep-
resentations, and uses only a limited choice of different
variables of the representations which are representative
(reflective) of different features of the line objects, and thus
are relevant to different aspects of characterization, identi-
fication, comparison, and analysis of these objects.

[0006] Inadequacy of representation of line objects by
discrete (digital) records The common piece-wise continu-
ous infrastructure of a line object cannot be adequately
represented by discrete records. Discrete records disallow
description of the underlying continuous curves by means of
differential calculus, which is the most appropriate tool for
characterization of such curves.

[0007] Representation of a piecewise continuous curve by
a discrete record always blurs the distinction between con-
tinuous and discontinuous portions of the curve. For
example, the distance between the consecutive data points in
a record acquired by a tablet device is proportional to the
speed of the tip of the writing utensil and can exceed the
distance between the end of one segment and the beginning
of the other. Thus segmentation based on the distance
between the consecutive data points may fail to accurately
represent the curve as a collection of records corresponding
to the underlying continuous segments.

[0008] In addition to discontinuities in the trajectory, line
objects such as, for example, human handwritten signatures
may contain various irregular and singular points. While
those points may be important for adequate characterization
of the line objects, discrete records disallow their accurate
treatment.

[0009] Also, discrete records do not allow easy change in
coordinates and parametrization of a curve, since this change
commonly involves differentiation and accurate handling of
singularities. For example, a change in parametrization from
the physical time to arclength requires differentiation with
respect to time and other limit operations, which might be an
extremely challenging task for such irregular and discon-
tinuous curves as those representing human handwriting.
Another typical problems in digital representation of line
objects is anisotropy of a digital grid. For example, the
weight (e.g., number of pixels per unit length) of a line
depends on its orientation on a rectangular grid.

[0010] The origin of the limitations of the existing art in
representation of line objects thus can be identified as
relying on digital records in the analysis of such objects,
which impedes the geometrical interpretation of the mea-
surements and leads to usage of algebraic rather than dif-
ferential means of analysis. Further limitations of the current
methods for conditioning and representation of digitally
sampled line objects arise from the absence of tools for
accurate representation of a curve given by a discrete sets of
ordered data in terms a natural (or intrinsic) equation of the
underlying continuous curve. An intrinsic equation specifies
a curve independent of any choice of coordinates or param-
eterization (Yates, 1974). For example, a plane curve (a
curve with zero torsion) can be naturally expressed by a
Whewell equation (an intrinsic equation which expresses a



US 2005/0207653 Al

curve in terms of its arc length and tangential angle), or by
a Cesaro equation, which expresses a curve in terms of its
arc length and radius of curvature (or equivalently, the
curvature).

[0011] Limitations of such continuous interpolating curves
as Bézier curves and B-splines A B-spline is a generalization
of the Bézier curve (Bartels et al., 1998): B-splines with no
internal knots are Bézier curves. A Bézier curve always
passes through the first and last control points and lies within
the convex hull of the control points. The ‘variation dimin-
ishing property’ of these curves is that no line can have more
intersections with a Bézier curve than with the curve
obtained by joining consecutive points with straight line
segments.

[0012] Undesirable properties of Bézier (or Bernstein-
Bézier) curves are their numerical instability for large num-
bers of control points, and the fact that moving a single
control point changes the global shape of the curve. The
former is sometimes avoided by smoothly patching together
low-order Bézier curves.

[0013] Limited number of non-equivalent representations
of a line object The methods of the existing art typically use
only a limited number of non-equivalent representations of
line objects, and fail to adequately represent different prop-
erties of these objects through different representations. For
example, a typical representation of human handwriting
acquired by a tablet device would be a parametric record of
the Cartesian coordinates, where the parameter is a physical
time. While such a record might adequately represent the
kinematic properties of the line object, different objects with
identical geometric properties are likely to have entirely
different kinematic records and thus would require an alter-
native representation for comparison and/or identification
with respect to geometric properties.

[0014] TLack of adequate tools for characterization of a line
object ‘as a whole’ In their characterization of line objects,
the approaches of the prior art tend to focus on a limited
number of individual elements of these objects (for example,
individual loops, arcs, characters, XR elements, etc.), and
their linking and interrelations, without capturing the inte-
gral interrelations among various variables and parameters
of different representations of line objects. These approaches
fail to correctly compare and/or identify those line objects
which are not adequately described in terms of such ele-
ments.

[0015] Limited number of non-equivalent distance mea-
sures of similarity of line objects and limited variety of
non-equivalent metrics for line object comparison. Different
variables of different representations are representative
(reflective) of different features of a line object, and thus are
relevant to different aspects of its characterization, identifi-
cation, comparison, and analysis. In the existing art, the
limitations in the number of alternative representations leads
to the limitations in the number of variables describing a line
object, and thus to the limitations in the number of available
distance measures and metrics for line object comparison
and/or identification.

[0016] Limitations of goodness-of-fit tests and other dis-
tance measures

[0017] Lack of adequate tools for management of line
object databases
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DISCLOSURE OF INVENTION

BRIEF SUMMARY OF THE INVENTION

[0018] The present invention overcomes the shortcomings
of the prior art by providing:

[0019] Representations of line objects well suited for
conditioning, modeling, characterization, identifica-
tion, comparison, and analysis of such objects. These
representations can be made invariant with respect to
those properties of line objects which are not impor-
tant and/or relevant for characterization, identifica-
tion, and comparison of these objects; can be param-
eterized in such fashion that different variables of the
representations are representative (reflective) of dif-
ferent features of the line objects, and thus are
relevant to different aspects of characterization, iden-
tification, comparison, and analysis of these objects;
are capable of capturing piecewise continuous nature
of line objects, and are capable of using digitally
sampled data for accurate treatment of segmentation,
singularities, and irregular points of line objects.

[0020] Characterization of a line object in terms of
the (modulated) distribution and/or density functions
of the variables of a representation of said line
object. These distribution/density functions capture
interrelations among various parameters of different
representations of a line object; allow construction of
a large number of various non-equivalent distance
measures of similarity of line objects, and large
variety of non-equivalent metrics for their compari-
son and/or identification; provide the ability to char-
acterize a line object ‘as a whole’, and focus on the
features the most relevant for comparison and/or
identification, disregarding the irrelevant features;
provide the ability to characterize a line object in
terms of the descriptive statistics of the respective
modulated distribution and/or density functions, and
provide the ability to determine the selectivity ranks
of the distance measures and/or comparison metrics
for a comparison and/or identification of the line
objects.

[0021] Comparison and/or identification of line
objects through various distance measures and good-
ness-of-fit tests of the distribution and/or density
functions of different variables of the representations
of the line objects. These distance measures and/or
goodness-of-fit tests can be constructed in a manner
which ensures that different comparison measures
are non-equivalent; can be used in various combi-
nations (for example, as a weighted sum with the
weights dependent on the selectivity ranks of the
distance measures and/or comparison metrics) for a
comparison and/or identification decision.

[0022] Methods for construction of databases of line
objects with self-learning capabilities for identifica-
tion and/or comparison, including methods for adap-
tive selection of line objects from a database of line
objects for comparison and/or identification with a
sample line object; methods for adaptive ranking of
the distance measures and/or comparison metrics
based on the selectivity rank of the descriptive
statistics of the respective modulated distributions
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and densities, and methods for making a comparison
and/or identification decision based of the weights
dependent on the selectivity ranks of the distance
measures and/or comparison metrics.

[0023] Methods for conditioning and pre-processing
of digitally sampled curves, including (i) methods
for robust (coincidence) segmentation and (ii) meth-
ods for smoothing and/or interpolation of segmented
curves in order index and/or other parameters.

[0024] Further scope of the applicability of the invention
will be clarified through the detailed description given
hereinafter. It should be understood, however, that the
specific examples, while indicating preferred embodiments
of the invention, are presented for illustration only. Various
changes and modifications within the spirit and scope of the
invention should become apparent to those skilled in the art
from this detailed description. Furthermore, all the math-
ematical expressions and the examples of hardware imple-
mentations are used only as a descriptive language to convey
the inventive ideas clearly, and are not limitative of the
claimed invention.

BRIEF DESCRIPTION OF FIGURES

[0025] FIG. 1 A simplified diagram of a typical system
incorporating the present invention.

[0026] FIG. 2 Example of a line object.

[0027] FIG. 3 Examples of angular and linear distribu-
tions and their respective densities.

[0028] FIG. 4 Examples of comparison through two-
sample statistics.

[0029]
parison.

[0030]
objects.

[0031]

[0032] FIG. 8 Interpolation of discontinuous and noisy
data.

[0033] FIG. 9 Tangential interpolating curves constructed
using quadratic (upper panels) and cubic (lower panels)
kernels.

[0034] FIG. 10 Tangential (upper panel) and smoothing
(lower panel) interpolations with a quadratic kernel.

[0035] FIG. 11 Defining the mean (or preferred) direction.

[0036] FIG. 12 Example of a curve aligned along the
preferred direction defined by equation (45).

[0037] FIG. 13 Robust (coincidence) segmentation of a
digitally-sampled curve.

FIG. 5 Examples of a combined percentile com-

FIG. 6 Example of an entry in a database of line

FIG. 7 Quadratic and cubic interpolating kernels.

[0038] FIG. 14 Screenshot of the upload module.

[0039] FIG. 15 Screenshot of the list module.

[0040] FIG. 16 Screenshot of the identification module.
[0041] FIG. 17 Original modulated linear densities of

triangles with calculated principal axes and gyroradii.

[0042] FIG. 18 Modulated linear densities of triangles
after translation, rotation, and scaling.
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[0043] FIG. 19 Comparison of densities using statistic of
Eq. (68).

[0044] FIG. 20 Compromise between robustness and
selectivity.

DETAILED DESCRIPTION OF THE
INVENTION

[0045] Note that in the detailed description of the inven-
tion the term ‘piecewise continuous representation (of a line
object)’ shall mean ‘representation reflective of piecewise
continuous nature (of a line object)’, even if said represen-
tation is expressed by its discrete (digital) record(s). Thus
the term ‘continuous’ relates to an appropriate mathematical
language describing the mathematical operations performed
on the variables of said representation (such as, for example,
differentiation and/or integration), even if the actual com-
putations of such operations are conducted numerically (for
example, in finite differences).

[0046] Also note that the detailed description of the inven-
tion provided below uses human handwritten signatures
acquired by tablet devices as an example of line objects. One
skilled in the art would recognize that this particular type of
line objects is presented for illustration only, and other types
of line objects can be treated in a similar manner. Also, it was
assumed that such features of this particular type of line
objects (human handwritten signatures) as (i) their position
and orientation in space and (ii) their absolute dimensions
are not important and/or relevant for their characterization,
identification, and comparison. One skilled in the art would
recognize that, for different types of line objects, these
features may or may not be relevant for the respective
purposes.

[0047] A simplified diagram illustrating the present inven-
tion is shown in FIG. 1. Step 10 is construction of a
piecewise continuous representation, or a plurality of such
representations, from a (discrete) record of a line object. The
variables and parameters of these representations are used in
Step 20, which constructs various modulated distribution
and density functions of the variables of the representations
created in Step 10. Step 20 may also output various descrip-
tive statistics of the distributions created in this step for
further use in Step 50. Step 30 uses the distribution and
density functions created in Step 20 for comparison and/or
identification of a line object by comparing the output(s) of
Step 20 with a reference distribution through the use of
goodness-of-fit tests or other distance measures. The refer-
ence distributions and/or densities are provided by Step 40,
which composes various distributions and densities pro-
vided through Step 20 for a plurality of line objects into a
database of such distributions and densities. For each line
object, the database composed by Step 40 may contain, in
addition to distributions and densities provided by Step 20,
such entries as (i) the representations constructed in Step 10
and/or their variables, (ii) the descriptive statistics of the
distributions provided by Step 20, (iii) the selectivity ranks
of the distributions determined in Step 50, and (iv) the
comparison and/or identification weights of the distributions
determined in Step 50. Step 50 guides and optimizes the
comparison and/or identification process of Step 30 by
providing the intrinsic comparison and/or identification
standards for the database composed in Step 40. These
standards are established through computation of the selec-
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tivity ranks of different distributions and/or densities, and
the selectivity ranks of different goodness-of-fit tests and
other distance measures used in Step 30. Step 50 also
provides the weights dependent on the selectivity ranks of
the distance measures and/or comparison metrics for making
comparison and/or identification decision in Step 30. The
selectivity ranks of different distributions and/or densities,
and the selectivity ranks of different goodness-of-fit tests
and other distance measures are typically determined in Step
50 through comparison of measures of variance of different
descriptive statistics and different goodness-of-fit tests com-
puted for/among the database entries identified as identical
or similar, with the respective measures of variance across
the whole database or for/among the entries identified as
dissimilar. Step 60 conducts smoothing and/or interpolation
of a segmented curve in order index and/or other parameters,
providing the ability to describe a line object given by its
discrete (digital) record in terms of continuously varying
variables. Step 70 implements robust (coincidence) segmen-
tation of a line object presented by its discrete (digital)
record, thus allowing the construction of piecewise continu-
ous representations of said object.

[0048] The subsequent detailed description of the inven-
tion is organized as follows.

[0049] Section 1 (p. 11) describes constructing various
representations of a curve invariant with respect to those
properties which are not important and/or relevant for its
characterization, identification, and comparison with other
curves. This section also discusses the usage of different
variables and parameters of the representations which are
representative (reflective) of different features of the line
objects, and thus are relevant to different aspects of charac-
terization, identification, comparison, and analysis of these
objects.

[0050] Section 2 (p. 16) describes characterization of a
line object in terms of the distribution and/or density func-
tions of the variables/parameters of a representation of the
object.

[0051] Section (p. 21) discusses comparison and identifi-
cation of line objects through goodness-of-fit tests and other
measures of similarity of the distribution and/or density
functions of the variables/parameters of representations of
these objects.

[0052] Section 4 (p. 23) describes the databases of line
objects and their distributions.

[0053] Section 5 (p. 24) discusses the optimization of the
comparison and/or identification process through creation of
intrinsic standards for the database.

[0054] Section 6 (p. 25) describes such elements of con-
ditioning and preprocessing of line objects as tangential and
smoothing interpolation in order index, and (optional) scal-
ing and alignment along the preferred direction.

[0055] Section 7 (p. 29) describes a method arising from
the formalism presented in § 1.3 for robust (coincidence)
segmentation of a digitally sampled curve.

[0056] As an additional illustration of applications of the
invention, § 8 (p. 31) provides outline of the signMine
software package designed for performing signature identi-
fication and verification.
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1 Representations of Line Objects

[0057] The first main step of the current invention is
construction of a piecewise continuous representation, or a
plurality of such representations, from a (discrete) record of
a line object. These representations of a line object should be
appropriate for conditioning, modeling, characterization,
identification, comparison, and analysis of such an object.
These representations: (i) can be made invariant with respect
to those properties of line objects which are not important
and/or relevant for characterization, identification, and com-
parison of these objects; (ii) can be parameterized in such
fashion that different variables of the representations are
representative (reflective) of different features of the line
objects, and thus are relevant to different aspects of charac-
terization, identification, comparison, and analysis of these
objects; (iii) are capable of capturing piecewise continuous
nature of line objects, and (iv) are capable of using digitally
sampled data for accurate treatment of segmentation, sin-
gularities, and irregular points of line objects.

[0058] Note that the term ‘piecewise continuous represen-
tation (of a line object)’ shall mean ‘representation reflective
of piecewise continuous nature (of a line object)’, even if
said representation is expressed by its discrete (digital)
record(s). Thus the term ‘continuous’ relates to an appro-
priate mathematical language describing the mathematical
operations performed on the variables of said representation
(such as, for example, differentiation and/or integration),
even if the actual computations of such operations are
conducted numerically (for example, in finite differences).

1.1 Example of a Line Object

[0059] An example of a line object produced by human
handwriting is provided in FIG. 2. This object is a piecewise
continuous curve in the XY plane, and the Z coordinate is
the force (‘pressure’) exerted along this curve by the tip of
the writing utensil. The color of the line indicates the speed
of the motion of the tip of the utensil (‘speed of writing’). In
this example, the line object is represented by 4 variables (X
and Y coordinates, force, and speed) which are functions of
a parameter (physical time). Different representations can be
derived by changing the coordinates and/or the parametri-
zation of the object.

1.2 Intrinsic Form of a Curve

[0060] Consider a curve given in a parametric form E(o)=
E.(0)+iE,(0), where o is some continuous order parameter. It
is convenient to call a representation of a curve ‘kinematic’
when the order parameter is a physical time t, E=E(t), and
thus the curve can be interpreted as the trajectory of a
moving particle. This trajectory can also be presented in a
natural (or intrinsic) form, for example in terms of its arc
length s and tangential angle ¢(s) (Whewell equation), or in
terms of its arc length s and curvature K(s) (Cesiro equa-
tion). Such an intrinsic equation specifies the shape of a
curve, independent of any choice of coordinates or param-
eterization (Yates, 1974), as a simple scalar function of one
argument. If a curve were indeed representing a movement
of a particle, the kinematics of this motion can be specified,
for example, by providing the speed of the particle’s motion
along the curve, v(t)=s()=|E(1)|.
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[0061] The curvature and the arc length can be expressed

as
oo 0
k(D) = M and s() = fdt’|§'(t’)|,
56 0
[0062] where z* denotes the complex conjugate of z, and

J[z] is the imaginary part of z. The curve itself then can be
expressed as

f(S)=§o+de’eiw(S/), (2)
0

[0063] where the tangential angle ¢ is

@(s) = o + fsds’/((s’). @
0

[0064] Note that equation (1) is valid only for differen-
tiable and regular curves as it requires finite and nonvan-
ishing speed [E(t)]. This restriction makes equation (1)
unsuitable for description such irregular and discontinuous
curves as those representing human handwriting, and ren-
ders this equation virtually useless when those curves are
given as discrete (digital) records. In the current disclosure,
we describe a method which enables accurate representa-
tion, in terms a natural equation of the underlying continu-
ous curve, of a modulated curve given by a discrete sets of
ordered data. Further, we demonstrate how such a represen-
tation leads to a set of tools for conditioning, analysis,
comparison, and identification of line objects, including
human handwritten signatures, and provide an outline of the
SIGNMINE software package.

1.3 Description of a Piecewise Continuous
(Segmented) Curve

[0065] A curve z =x +iy resulting, for example, from
human handwriting (such as, for example, a signature) can
consist of only one contiguous component, or a plurality of
components. In the latter case, the order and relative posi-
tions of the components might be relevant to verification
and/or identification of the curve. When the components are
arranged in ‘chronological’ order (e.g., using an order
parameter 0, 0 Zo =1), we can preserve the information
about their order and relative positions by connecting the
ends of the ‘earlier’ components with the respective origins
of the ‘later’ components by straight-line segments. In our
description of a curve, we want the ability to easily switch
between the two representations of the curve, including or
excluding the connecting segments, while preserving a
unified formalism. We shall use the term ‘connected seg-
mented curve’ when the straight-line segments are included,
and the term ‘disconnected curve’ otherwise.
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[0066] Differential displacement along a connected seg-
mented curve can be formally defined as

Q)

dl = d d
= ‘%2(0) 0,

[0067] where it is assumed that the derivatives at discon-
tinuities of z(0) can be expressed using the Dirac d-function
(see Dirac, 1958, for example).

[0068] Differential displacement along a disconnected
curve is defined as

d ©)
%2(0)

ds = do,

where

d 1 d ®)
159 = 305 * o= O

dz dz M
and Wand oz
[0069] are the right-hand and left-hand, respectively,

derivatives of z:

(0) = lim z(o &) —z(0)
dox =% +e ’

[0070] It should be easy to see from equations (4) and (5)
that dl and ds are related as

dl=ds+ 8l(o) = ds + Sl(s), ®)
where
8l(x) = gglz(x +e)—zlx -2, )

[0071] Note that dl=ds anywhere within a continuous
component of the curve.

[0072] The total lengths of a disconnected and a connected
segmented curves, respectively, can be expressed as

S—f]d ds
“J °do’

(10)

T dl
L= do— =S Sl(s;
fo oo +Z (si),

[0073] where the summation goes over all points s; where
the curve is discontinuous.
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1.4 Intrinsic Equation for a Piecewise Continuous
Curve

[0074] When the tangential angle is expressed as

¢(s) = lim arglz(s +&) —z(s — )], (an
[0075] where arg(z) is the (complex) argument of a com-

plex number z (see § below), an intrinsic (Whewell) equa-
tion of a piecewise continuous curve can be written as

s ) . 12
z(s) = f ds &%) Z Sl(s e (s — s;), 12
0 i

[0076] where 6(x) is the Heaviside unit step function, and
the summation goes over all points s; where the curve is
discontinuous.

[0077] The kinematic description is obtained by express-
ing the arc length and the tangential angle as functions of
time,

20 = f A5 +Zél(t;)e‘¢"i’0(t—t;), 13
Y 7

[0078] where the dot over s denotes a time derivative.

1.4.1 Quadrant-specific Inverse Tangent

[0079] The (complex) argument of a complex number z
can be computed as a quadrant-specific arctangent and
defined as follows:

arcsin(y /|z]) if xz=0 (14)
. —aresin(y/lz) +7 if x<0,y=0
= +iy) = .
arglz) = arglv + ) —aresin(y/lz)) -7 if x<0,y<0

0 it |7 =0

1.5 Other Representations

[0080] One skilled in the art would recognize that the
representations of curves described above can be easily
modified by changing their variables (for example, by using
order, arc length, or time as parameters) in such fashion that
these are reflective of different features of the line objects
(for example, kinematic or geometric), and thus are relevant
to different aspects of characterization, identification, com-
parison, and analysis of these objects. By changing the
variables of the representations, we can make the latter
invariant with respect to those properties of line objects
which are not important and/or relevant for characterization,
identification, and comparison of these objects, and focus on
the different features of the objects. For example, we can
separate geometric properties of a line object from its
kinematic properties, consider or disregard the order and
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connectivity of contiguous components of the object, etc.
Additional examples of the representations of line objects
are provided in § 6.4.

2 Characterization of a Line Object in Terms of the
Distribution and/or Density Functions of the
Variables/Parameters of a Representation of the
Object

[0081] The line objects can be characterized in terms of
various modulated distribution and/or density functions of
the variables of their representations (Nikitin and David-
chack, 2003a,b). Depending on the nature of said variables,
these distribution functions can take various forms such as,
for example, angular (circular) distributions and densities
(e.g., offset distributions) for cyclic variables, or linear
distributions and densities, and capture different interrela-
tions among various variables of different representations of
a line object. By changing the modulation in the distribu-
tions (see Nikitin and Davidchack, 2003a,b, for example),
the distributions can be made reflective of different interre-
lations among the variables and/or parameters, e.g. geomet-
ric and/or kinematic. The modulated distribution and density
functions allow construction of a large number of various
non-equivalent distance measures of similarity of line
objects, and large variety of non-equivalent metrics for their
comparison and/or identification. Said distributions also
provide the ability to characterize a line object ‘as a whole’,
and focus on the features the most relevant for comparison
and/or identification, disregarding the irrelevant features,
and provide the ability to characterize a line object in terms
of the descriptive statistics of the respective modulated
distribution and/or density functions, allowing to determine
the selectivity ranks of the distance measures and/or com-
parison metrics for a comparison and/or identification of the
line objects.

2.1 Circular (Angular) Distributions and the
Respective Densities

[0082] The amplitude distribution of an angular (or cyclic
with the modulus 2m) variable ¢p=¢(s) can be computed as

L s (s)
wip = [ dsotp- gl
0

[0083] where we can take, without loss of generality, the
range of ¢(s) to be from —x to 7. The distribution function
W (B) can be given the following probabilistic interpreta-
tion: if s is a uniform deviate in a range O to S, then W,(f3)
is the probability that ¢(s) does not exceed f.

[0084] In practice, the amplitude distribution W () can be
computed as (see Nikitin and Davidchack, 2003a,b, for
example)

1 s (16)
=g f dsFap [B- ()],
0

[0085] where &F ,p(x) is a continuous function which
changes monotonically from 0 to 1 so that most of this
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change occurs over some characteristic range of threshold
values A, and

LmFap (x) = 6x). an

[0086] The respective density is a periodic function

-y = 2mk (18
Us(B) = a5 (B) = Y (B +2nrk),

[0087] where W* (p) is defined as
W (B)=W,(B+2mk)-k,
—n(2k+1)<Pp=-n(2k-1), 19

[0088] and k is an integer.

2.1.1 Examples of Angular Distributions

[0089] Several examples of angular distributions can be
given as follows:

1S (20)
wip = [ asotp- ol
N 0
1 L 20
wip) = [ diis- o)
L 0
17 (22)
wip = [ dwip- el
T 0
[0090] where ¢ is the tangential angle, and
1S (23)
Eip= [ dsolp-atol,
N 0
1 L 24)
2ip)= 1 [ dep-
LJo
25)

1 T
Eip= 1 [ doip- e
0

[0091] where o is the polar angle of equation (44). Note
that equations (20), (21), (23), and (24) relate to the geo-
metric description of a curve, while equations (22) and (25)
relate to its kinematic description. FIG. 3 shows the distri-
butions, along with their respective densities, given by
equations (20) through (25) in the left-half panels. ¥, y,,
E.and &, , are shown by the solid black lines, W}, and &, are
shown by the gray lines, and W, },, E,, and &, are plotted by
the dashed black lines.
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2.2 Linear Distributions and the Respective
Densities

[0092] Various linear distributions and the respective den-
sities of a variable x=x(s) can be viewed as different appear-
ances of general modulated distributions

S (26)

f dsK(s)Fap [D — x(s)]

(D) = Os—

[ dsK(s)
S (27)
oy 490 [ asko o0 -0
T dD) T [P dsks)
[0093] and densities

[0094] where K(s) is a unipolar modulating signal (see
Nikitin and Davidchack, 2003b, for example), and f,,(x)=d

Ap(X)/dx. Various choices of the modulating signal allow
ffs to introduce different types of threshold densities and
impose different conditions on these densities.

2.2.1 Examples of Linear Distributions

[0095] Several examples of linear distributions can be
given as follows:

i)

T N
-
Gi(x) = éfosdﬁ[)(— %], and
Gy = % fo TM[X_ ::) |

[0096] FIG. 3 shows the distributions, along with their
respective densities, given by equation (28). F,, f, G, and
g are shown by the solid black lines, F,, and f; are shown by
the gray lines, and G, and g, are shown by the dashed black

lines.

[0097] Note that the interpolation scheme described in §
6.1 allows easy numerical computation of the densities from
known distributions.

2.3 Descriptive Statistics

[0098] For comparison and/or identification of line
objects, we can introduce many ‘direct’ comparison mea-
sures for the distribution and density functions, such as the
‘distance’ estimates, etc. However, most of those measures
would have a computational complexity in O(N?). This is
appropriate for comparison and/or verification, but is not
suitable for identification and search.

[0099] Even though different forms of expressing a curve
may be equivalent, various distributions constructed for
different variables may be different in terms of their
‘descriptive’ ability, and have different robustness and selec-
tivity with respect to different variations in the curve (e.g.,
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due to noise, discontinuities, singular and/or improper
points, etc.). Given a variety of distributions of the variables
expressing a line object, we can also introduce a large
number of descriptive statistics for those distributions, such
as moments of linear distributions, trigonometric moments
for circular distributions, various entropy-based statistics,
and other. We can then characterize the curve in terms of
those statistics and/or distributions. This allows us to reduce
both the size of the inputs (by an order of magnitude or
more) and the computational complexity of comparison (to
O(N) or even O(logN)). It also enables a ‘hierarchical’
organization of search and retrieval.

2.3.1 Basis for entropy-based statistics

[0100] We can define the entropy H for a density func-
tion ¢(x) as

2%, 29
H=Cp— f:;dxgo(x) In [fAD(O)] =0,

[0101] where f,(0) is the modal value of f,(X)=
dF,(x)/dx, and C; is a normalization constant which is a
property of the probe f,,

30
[t 125 .

[0102] dependent only on the shape of f,,. One skilled in
the art would recognize that a variety of alternative defini-
tions of the entropy can be used for the entropy-based
statistics.

3 Comparison and Identification Through
Goodness-of-fit Tests and Other Distance Measures

[0103] Note that even though the properties of the thresh-
old distributions and densities defined above are usually
associated with those of the probability distributions and
densities, the above definitions are given for deterministic
signals and do not rely on the usual axioms of probability
and statistics. The formal similarity of the latter with the
probability functions, however, allows us to explore proba-
bilistic analogies and interpretations. Such interpretations
enable the construction of a variety of ‘statistical’ estimators
to evaluate the similarity between a pair of variables in a
flexible way, permitting a meaningful adaptation to particu-
lar problems (see Nikitin and Davidchack, 2003a,b, for
example).

3.1 Goodness-of-fit Tests for Linear Distributions

[0104] As a measure of discrepancy between two distri-
butions, one can use such statistics as Kolmogorov-Smirnov
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and Cramér-von Mises (see Darling, 1957; Kac et al., 1955,
for example).

3.1.1 Two-sample Cramér-von Mises Statistic

[0105] For two linear distributions F and G, the following
statistic of Cramér-von Mises type (see Darling, 1957; Kac
et al., 1955, for example) can be used:

2 3 2 (31)
Y(F,G)= 3 d[F(x) + G)IW[F(x) + G][F(x) - G,

[0106] where W is a (normalized) weight function and, if
both F and G are continuous, the integration may be carried
out with respect to either 2F or 2G instead of F+G, since

32
r d[F () - GWIF() - G = 0. (2

—oa

3.2 Goodness-of-fit Tests for Circular Distributions

[0107] For circular distributions, one can use the circular-
invariant modifications of the Kolmogorov-Smirnov and
Cramér-von Mises tests (see Darling, 1957, for example),
such as the Kuiper (Kuiper, 1962) and Watson (Watson,
1961) statistics.

3.2.1 Two-sample Watson Statistic

[0108] Two-sample Watson statistic w?, 0 Sw>=1, can be
defined as

WAW,, Wo)=6 P, (BW[ (BB 1 (B)-
(B P-AY,,7, (33

[0109] where W is a (normalized) weight function, {,=
P, +1,, and

AT 125
V3] Ao (BYWIW (B)+Wo(B) W4 (B)-W-(B)]: (34)

3.3 Other Comparison Tests

[0110] One skilled in the art would recognize that, in
addition to the two-distribution statistics described above,
one can employ a variety of other goodness-of-fit and
distance measures for the distribution and/or density func-
tions, such as different correlation and entropy-based tests
(for example, the differential entropy). These distance mea-
sures and/or goodness-of-fit tests can be constructed in a
manner which ensures that different comparison measures
are non-equivalent, and can be used in various combinations
(for example, as a weighted sum with the weights dependent
on the selectivity ranks of the distance measures and/or
comparison metrics) for a comparison and/or identification
decision.

3.4 Percentile Comparison for Identification and/or
Comparison

[0111] If gy is the statistic resulting from a similarity
(goodness-of-fit) test between 1 th and j th distributions, then
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the similarity score assigned to this value can be calculated
as, for example,

Py = Plgy) = %ZZO(% - gij)s

N N (35)
k=1 =1

[0112] where the summation is carried out over all distri-
butions, and can be interpreted as the probability to find a
worse match between all available pairs of distributions. It
is assumed in equation (35) that the statistic g;; is a non-
increasing measure of similarity.

[0113] FIG. 4 provides an example of the matrices P;
constructed for various distributions described in § 2. Here,
a sample of 45 signatures taken from 9 persons (5 signatures
per person) was used. Notice that signatures taken from the
same person consistently exhibit high level of similarity
(5-by-5 blocks along the diagonals of the matrices) regard-
less the type of the distribution, while the measures of
similarity of the signatures taken from different persons vary
in a wide range, depending on the distribution used. Thus the
total percentile comparison matrix Pij can be constructed as
a measure of central tendency of the elements P;; calculated
for different types of distributions, and the ‘reliability’ of this
estimate can be calculated as the respective measure of
dispersion. FIG. 5 provides an example of such a matrix Pij
calculated for the comparison matrices depicted in FIG. 4.

4 Databases of Line Objects and their Distributions
and Densities

[0114] Various distribution and density functions com-
puted for different variables of the representations of a
plurality of line objects are composed into a database. For
each line object, such a database may contain, in addition to
distributions and densities, such entries as (i) various rep-
resentations of the line objects and/or their variables, (ii) the
descriptive statistics of the distributions, (iii) the selectivity
ranks of the distributions, and (iv) the comparison and/or
identification weights and confidence intervals of compari-
son and/or identification. The database should also include a
means for updating the selectivity ranks with the addition of
new entries, and a means of recalculating the weights and
the confidence intervals. An example of an entry in a
database of line objects is shown in FIG. 6.

[0115] While the selectivity weights enhance the reliabil-
ity of a comparison and/or identification decision, the con-
fidence intervals increase the speed of the database search
and/or the decision making. An example of the usage of a
confidence interval of a descriptive statistic for identification
of a line object is as follows: If the respective statistic falls
within the confidence interval, the database entry is retained
for the subsequent processing. Otherwise, the entry is
excluded from consideration.

5 Selection and Ranking

[0116] The process of comparison and/or identification of
line objects is guided and optimized by providing the
intrinsic comparison and/or identification standards for the
database. These standards are established through compu-
tation of the selectivity ranks of different distributions and/or
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densities, and the selectivity ranks of different goodness-of-
fit tests and other distance measures.

[0117] The selectivity ranks of different distributions and/
or densities, and the selectivity ranks of different goodness-
of-fit tests and other distance measures are typically deter-
mined through comparison of measures of variance of
different descriptive statistics and different goodness-of-fit
tests computed for/among the database entries identified as
identical or similar, with the respective measures of variance
across the whole database or for/among the entries identified
as dissimilar. If, for example, the ratio of the deviation (e.g.,
standard or absolute deviation) of a certain statistic (e.g.,
some moment of some linear distribution) within the groups
of similar entries (e.g., signatures of the same persons) to the
deviation of this statistic across the entire database is small,
this statistic is assigned a high selectivity rank and a large
weight. Otherwise, this statistic receives a low selectivity
rating and a small weight.

6 Conditioning and Preprocessing

[0118] Conditioning and pre-processing of digitally
sampled line objects would typically include (i) robust
(coincidence) segmentation and (ii) smoothing and/or inter-
polation of segmented curves in order index and/or other
parameters. Smoothing and/or interpolation of a segmented
curve in order index and/or other parameters provides the
ability to describe a line object given by its discrete (digital)
record in terms of continuously varying parameters. Robust
(coincidence) segmentation of a line object presented by its
discrete (digital) record allows the construction of piecewise
continuous representations of said object.

6.1 Interpolation in Order Index

[0119] Consider a (raw) digital record which consists of
the sets of the Cartesian coordinates {r;}={x;, y;}, the time
values {t;}, and the (optional) modulation {f;}, where i=0, 1,
2, ..., N is an order index. It is convenient to use a
normalized order index o, 0=0=iN"'=1, instead of an
integer i. The modulation vector f can be, for example, the
force (pressure) applied by the writing utensil, the curve’s
color, ete. The main purpose of (smoothing) interpolation is
to (re-)create a continuous representation of a curve from its
digital record. This continuous representation must
adequately correspond to the raw digital record, and should
be suitable for expression in an intrinsic form. When such a
continuous (high resolution) record is available, all param-
eter values along the interpolating curve (the values of the
Cartesian coordinates, arc length, tangential angle, curva-
ture, time, speed, modulation, etc.) can be obtained with
arbitrary precision. In addition, interpolation allows the
reduction of noise and sensitivity to the size of sampling
interval(s).

[0120] The simplest interpolation is a linear (broken-line)
interpolation, which amounts to connecting the sequential
points 1; and r,, ; by straight-line segments and correspond-
ing definition of the values of the other parameters (e.g., the
speed and the tangential angle) along those segments. Even
though a broken-line curve is not differentiable (and thus, for
example, the curvature is zero anywhere between vertices
and is infinite at a vertex joining a pair of non-parallel
segments), a proper handling of singularities allow its intrin-
sic-form description, as illustrated in § 1.4.



US 2005/0207653 Al

[0121] In a case of noisy finely-sampled data, representa-
tion of a (piecewise) smooth curve through a broken-line
interpolation is misleading and virtually useless. The main
usage of the linear interpolation is as follows: (i) obtain the
vertices (their coordinates as well as other parameters at
those points) by sampling the piecewise smooth tangential
or smoothing interpolating curve, then (ii) use the linear
broken-line representation to obtain the necessary descrip-
tive parameters of the curve suitable for numerical calcula-
tions.

6.2 ‘Tangential’ Interpolation by a Finite-size
Continuous Kernel

[0122] Given a discrete (ordered) set of reference points
(%, ¥, 1=0, 1, 2, . . ., N, where x; are the arguments of the
reference points, and y; are the values of the reference points,
the values of a function y(x) and its various derivatives (of
nth order) at arbitrary x can be determined through the
following interpolation scheme:

n N-1

d
I [y(x) = yol = ; Ay;

@ Ha(x—x) — Hy(x— %1 36)
dxn Ax; ?

[0123] where the increments in the arguments and the
values of the reference points, respectively, are Ax;=x;, ;-X;
and Ay;=y;,,-V;, the ratio of the reference increment in the
kernel to the increment in the arguments of the reference
points is

Ho(x—x) = Ha(x=xi41) d . (37
B T —— %HA(x—x;) if Ax; =0,

[0124] and H,(x) is a continuous (differentiable) kernel
having a width parameter A such that in the limit lim A—0
said kernel becomes a ramp function,

g% Ha(x) = x0(x). (38)

[0125] Also note that, as follows from equation (38),
lim, _, H'\(x)=6(x), and lim,__,H" ,(x)=3(x), etc., and in the
limit A—0, for Ax;>0, equation (36) represents a simple
linear interpolation. FIG. 7 shows the quadratic and cubic
interpolating kernels.

[0126] Notice that the interpolation scheme given by equa-
tion (36) can handle discontinuous data (i.e., Ax;=0), and
does not require {x;} to be monotonic (i.e., Ax; can be
negative). Thus it is suitable for interpolating discontinuous
and noisy data, as illustrated in FIG. 8.

[0127] 1If the width of a kernel does not exceed half of the
increment in the original order index (ie., Ao=(2N)™),
interpolation leads to a smooth curve with the following
properties:

[0128] the interpolating curve passes through a
middle point of each straight-line segment connect-
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ing a pair of adjacent vertices while being tangential
to the respective segment at this point, and

[0129] the tangential angle to the interpolating curve
changes monotonically between the middles of any
two adjacent segments of the broken line.

[0130] This is illustrated in FIG. 9 for interpolations using
quadratic (upper panels) and cubic kernel (lower panels).
Notice that in the righthand panels the vertices i and i+1
coincide forming a single vertex, and that the interpolating
curve passes through this vertex.

[0131] A typical use of a tangential interpolation would be
in a case when accuracy of data acquisition is achieved at the
expense of the increase in the sampling interval(s), which
leads to a too ‘rugged’ shape of a curve when a linear
interpolation is used.

6.3 Smoothing Interpolation

[0132] In a smoothing interpolation, the width of a kernel
exceeds half of the increment in the original order index
(i.e., Ao>(2N)™1), and thus, as described in § 6.2, the values
of the interpolating curve result from a contribution of more
than a single original data point. A typical use of a smoothing
interpolation is the reduction of noise when the increase in
sampling frequency leads to the loss of accuracy in data
acquisition.

[0133] FIG. 10 illustrates both tangential (upper panel)
and smoothing (lower panel) interpolations with a quadratic
kernel. In both panels, the raw data is shown in grey (in a
form of linear broken-line interpolations), and the interpo-
lating curves are shown by black lines.

6.4 Scaling and Alignment Along the Preferred
Direction

[0134] There are many alternative definitions of such
factors as the size (total arc length), orientation, and position
of a curve in relation to the coordinates’ origin (see Nikitin
and Popel, 20044, for example). For example, the definitions
of the center of a curve and its mean (or preferred) direction
can be defined in kinematic and/or geometric sense, and will
depend on whether the connecting (discontinuous) segments
are included into consideration. It may be argued that such
factors by themselves are not relevant to the curve’s veri-
fication and/or identification, even though the differences in
these factors due to different definitions may serve as
descriptive statistics.

[0135] The mean (or preferred) direction, ¢, can be defined
in a variety of ways. For example, for a disconnected curve
it can be computed in geometric sense as

== [V, <39>
0

[0136] and its geometric meaning, as illustrated in FIG. 11
(a), is the direction of a segment connecting the origin and
the end of a curve composed of concatenated continuous



US 2005/0207653 Al

components of the curve. The respective kinematic defini-
tion is

$=¢,= arg(fT dte‘¢“’], @
0

[0137]
(®).
[0138] For a connected segmented curve, the preferred
direction can be expressed as

and its geometric meaning is illustrated in FIG. 11

1)

S
$=¢, =ar f dse’®D + % 6l(s)e'?s) |,
l ) Z

[0139] and its geometric meaning, as shown in FIG. 11
(c), is the direction of a segment connecting the origin and
the end of the curve.

[0140] As a sensible alternative, the preferred direction
can be defined as the direction of a vector connecting the
origin of a curve with its center, for example:

% =@, = arg(z,), 42)

%= fo ’ ds{1 - g)e‘*f’m + Z a1 - %)e‘*f"xﬂ,

[0141] as shown in FIG. 11 (d).

[0142] A normalized aligned curve can be expressed in an
intrinsic form as

1 “43)
&(s) = 5

s
ds &) 81(s;)E0(s — 57|,
Jaseey

[0143] where ¢(s)=¢(s)-¢. In polar coordinates, E(s) can
be written as

&(s) = r(s)e™, “4)

1
rs) = gkl

als) = arglz(s)] - @,

[0144] where z(s) is given by equation (12) and the
preferred direction o is defined as

S . 45
@= arg(f dslz(s)lze'wx)]. @)
o

[0145] An example of a curve aligned along the preferred
direction defined by equation (45) is shown in FIG. 12.
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7 Robust (Coincidence) Segmentation of a
Digitally-sampled Curve

[0146] Representation of a piecewise continuous curve by
a discrete record always blurs the distinction between con-
tinuous and discontinuous portions of the curve. For
example, the distance between the consecutive data points in
a record acquired by a tablet device is proportional to the
speed of the tip of the writing utensil and can exceed the
distance between the end of one segment and the beginning
of the other. Thus segmentation based on the distance
between the consecutive data points may fail to accurately
represent the curve as a collection of records corresponding
to the underlying continuous segments.

[0147] The formalism of § 1.3 allows us do develop a
simple robust procedure for segmentation of a digital record.
Notice that, as follows from equation (9), the differential 31
is zero everywhere except at the ‘breaks’ between the
continuous components. Let us define the double differential
3’1 as

821(0) = lirr0161(o +£)—6l(0), (46)
[0148] and point out that 8°1 also vanishes at continuous

components while taking finite absolute values at disconti-
nuities.

[0149] Consider now a curve sampled at discrete values of
0, and the finite-difference equivalents of the differentials 31
and §°1:

Al; = |z(0i11) = (o)l 7
and

) 1 (48)
|A%L] = §[|A1i+1 — AL +|AL = Al ]].

[0150] Notice that both Al; and |A%1| will have pronounced
maxima whenever a discontinuity lies between o; and o;, ;.
On the other hand, the extrema of Al; will correspond to the
zeros of |A%l}| at continuous portions of the curve.

[0151] Thus a robust (coincidence) segmentation of a
digitally-sampled curve can be performed using the follow-
ing algorithm: Discontinuities can be found as coincident
maxima of Al and |A%L| lying above a certain threshold (or
respective thresholds). Since the number of discontinuities is
generally much smaller than the total number of the data
points in any meaningful digital record, a simple choice for
a threshold would be a high percentile of the values of Al
and/or [A%1]. An example of a formal procedure for deter-
mining the percentile (quantile) value(s) for the segmenta-
tion threshold(s) is provided in § 7.1.

[0152] FIG. 13 illustrates the performance of the algo-
rithm on two curves with different sampling (see right-hand
panels). The panels on the left show the first differential Al
by the solid black line, the second differential [A®1] by the
solid gray line, and the respective thresholds (90th percen-
tiles) by the dashed lines. The discontinuous points are
indicated by the asterisks. In the right-hand panels, the data
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points (dots) belonging to continuous portions of the curves
are connected by the black lines.

7.1 Example of an Iterative Procedure for Setting
the Threshold(s) of Coincidence Segmentation

[0153] A quantile value of the segmentation threshold can
be determined as a solution of the following equation:

N “)
q= No

[0154] where N(q) is the total number of discontinuities,
for all digital records of the line objects in the database,
determined through coincidence segmentation with the
threshold set at 0=q=1, N, is the total number of the data
points in said all digital records, and =1 is a number of
order unity. Equation (49) can be solved, for example, by an
iterative procedure starting with an arbitrary initial guess for
q (for example, q=0 or q=1).

8 Example of Online Database of Handwritten
Signatures

[0155] In this section, we provide a brief description of a
complete life-cycle software package for signature identifi-
cation and verification. The SIGNMINE engine stands in the
middle, it has image processing tools and internal formats
built-in and incorporated with the database. The input data
comes from image acquisition devices like scanners or
pressure-sensitive tablets, the output is interfaced for other
applications (web systems, control systems, etc.). In general,
the SIGNMINE engine uses drivers to integrate with many
off-the-shelf image acquisition devices and standardized
software platforms, and connectors to interface with legacy
and commonly used authentication systems and applica-
tions. The SIGNMINE package has applicability in all areas
where signature identification or verification is desirable or
required.

[0156] The software package for automated handwritten
signature recognition, verification, and mining, SIGNMINE,
includes (i) signature acquisition tools, (if) a searchable
signature database (the SIGNMINE engine), and (iii) an
online interface. The SIGNMINE package currently sup-
ports pressure sensitive tablets which allow recording both
geometric (signature contours, shapes, etc.) and kinematic/
dynamic characteristics (pressure, time stamps, etc.).

[0157] The SIGNMINE algorithm represents signatures
given by discrete data in terms of continuous quantities, and
enables a novel extremely effective approach to analysis of
human handwriting. SIGNMINE algorithm has capabilities
far surpassing the current state-of-art and the products of the
industry leaders. The main features of SIGNMINE can be
summarized as follows:

[0158] Very high accuracy of signature identification
and verification, for example better than 99.999%
accuracy when pressure data is available. Even with-
out pressure information, SIGNMINE provides more
than 99.9% accuracy, which, when used in combi-
nation with another security measure (for example,
voice authentication), offers more than 1,000-fold
enhancement of such a measure.
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[0159] Inexpensive hardware. If 99.9% accuracy is
sufficient, then no pressure information is required
and almost any tablet device can be employed for
signature acquisition. In addition, SIGNMINE can
use data acquired by such devices as touchpads and
touchscreens through fingertip writing.

[0160] Very high level of robustness with respect to
variations in quality of acquired signatures. Signa-
tures recorded by various devices with different
characteristics (for example, different spatial and
timing resolution) can be processed accurately and
reliably.

[0161] Intrinsic database learning capabilities, ensur-
ing that the performance improves as the database
Zrows.

[0162] Unlike the competing algorithms which rely on
simplistic distance measures of similarity, SIGNMallows
construction of a large variety of non-equivalent metrics for
signature comparison. Even though the individual variations
in these measures can be relatively large, they are typically
much smaller than the respective variations across the whole
database of signatures. As the number of such metrics
increases, so does the robustness and selectivity of verifi-
cation and identification performed by the SIGNMINE
algorithm.

[0163] The SIGNMINE engine is a key component of the
software package, it includes the tools for generating mul-
tiple distributions, the relational database, scoring mecha-
nisms, and decision making tools. Signature databases are
currently considered to be a part of multimedia databases,
and they differ from traditional information databases based
on textual searching. This attributes to the fact that a
text-based query is computationally more efficient to per-
form than the image analysis and comparison. Since a
database of signatures based on textual searching alone is
inadequate for a qualitative analysis in the areas of biomet-
rics and security, the SIGNMINE implementation incorpo-
rates distinctions based on the image data. Some of the
components of our solution include the server-based data-
base (a relational database), different types of image acqui-
sition tools (pressure sensitive tablets), signature processing
and classification algorithms (external modules), and a web-
based user interface (dynamically generated web pages).
SIGNMINE engine is a robust and scalable technology
designed to support behavioral authentication mechanisms
based on handwritten electronic signatures for identification
and verification.

[0164] The web-based interface has five basic modules:
login, upload, list, verify, and identify. The database is
protected against any unauthorized access by the login
module. After the successful login, the user is given admin-
istrative rights to the upload and list functions. The upload
module allows the user to upload a signature image provid-
ing a descriptive keyword (e.g., a person’s name), and to
choose a file type from the drop down list (see FIG. 14).
After clicking submit, the web script updates the database
and generates all the necessary distributions for the given
image.

[0165] The list script creates a table, listing all the data
from the database. For signature images, the data are listed
in the form of thumbnails (see FIG. 15). A button labelled



US 2005/0207653 Al

regenerate is also available for administrative users to auto-
matically regenerate distributions for all signatures. This is
especially useful when a new classification feature is added
to SIGNMINE engine. By clicking regenerate, all previously
stored data are recalculated every signature in the database.
Images can be inspected and deleted when necessary.

[0166] The only functions accessible to non-administra-
tive users are verify and identify, because they do not alter
the database. Identify is a module that allows the user to
upload a signature image, generate distribution data, and
compare the generated data against the data of all images in
the database. The verification module collects the keyword
label from the user and compares the generated data against
a limited set of images. Both modules create a table dis-
playing the testing signature and listing the top ten signa-
tures from the database along with similarity ratings (see
FIG. 16).

Articles of Manufacture

[0167] Various embodiments of the invention may include
hardware, firmware, and software embodiments, that is, may
be wholly constructed with hardware components, pro-
grammed into firmware, or be implemented in the form of a
computer program code.

[0168] Still further, the invention disclosed herein may
take the form of an article of manufacture. For example,
such an article of manufacture can be a computer-usable
medium containing a computer-readable code which causes
a computer to execute the inventive method.

What is claimed is:
1. A method for analysis of line objects, the method
comprising:

(2) defining a representation of a line object in terms of a
plurality of piecewise continuous variables; and

(b) constructing one or more modulated functions of said
variables, where said modulated functions are selected
from the group consisting of modulated distribution
functions and modulated density functions.

2. The method of claim 1 further comprising:

calculating statistics of said modulated functions wherein
said statistics are descriptive of the properties of said
modulated functions.

3. The method of claim 1 further comprising:

comparing one or more of said modulated functions with
respective reference modulated functions.
4. The method of claim 3 wherein said reference modu-
lated functions are provided by a database.
5. The method of claim 4 further comprising:

calculating selectivity ranks of said modulated functions,
and utilizing said selectivity ranks for retrieving said
reference modulated functions from said database.
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6. The method of claim 3 wherein said comparison is
through calculation of a weighted sum of different compari-
SON measures.

7. A method for representing a discrete set of reference
points by a continuous function, said discrete set having an
ordered list of arguments of said reference points and an
ordered list of the respective values of said reference points,
the method comprising:

(a) determining increments in said arguments of said
reference points;

(b) determining increments in said values of said refer-
ence points;

(¢) determining reference increments in a kernel, said
kernel having a width parameter such that in the limit
of said width parameter approaching zero said kernel
approaches a ramp function;

(d) determining an nth derivative of a difference of said
continuous function and an offset value as a sum of all
products of said increments in said values and said nth
order derivatives of the respective ratios of said refer-
ence increments to said increments in said arguments.

8. The method of claim 7 wherein at least one derivative
of said kernel is continuous.

9. A method for coincidence segmentation, the method
comprising:

(a) defining a first difference as a finite difference equiva-
lent of differential displacement along a connected
segmented curve;

(b) defining a second difference as the absolute value of
a finite differential equivalent of a double differential
displacement along said connected segmented curve;

(¢) finding discontinuities of said connected segmented
curve as coincident maxima of said first difference and
said second difference, said maxima lying above a
coincidence threshold.

10. The method for coincidence segmentation as recited in
claim 9 where a quantile value of said coincidence threshold
is determined as an approximate solution of an equation
where the difference between a unity and said quantile value
is equal to the ratio of the total number of discontinuities
determined through coincidence segmentation with said
coincidence threshold set at said quantile value for all digital
records of the line objects in a selection of said line objects
to the total number of the data points in said all digital
records, said ratio being multiplied by a factor greater than
one, said factor being on the order of unity.



