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Abstract— Impulsiveness, or a high degree of peakedness,
of interchannel interference in digital communication systems
typically results from the non-smooth nature of any physically
realizable modulation scheme designed to transmit a discrete
(discontinuous) message. Even modulation schemes painstak-
ingly designed to be ‘smooth’ are not. The non-smoothness
of the modulation can be caused by a variety of hardware
non-idealities and, more fundamentally, by the very nature of
any modulation scheme for digital communications. In order to
transmit a discrete message, such a scheme must be causal and
piecewise, and cannot be smooth, or infinitely differentiable.

Recursive differentiation of a non-smooth transmitted signal
eventually leads to discontinuities. When observed by an out-
of-band receiver, the transmissions from these discontinuities
may appear as strong transients with the peak power noticeably
exceeding the average power, and the received signal will have
a high degree of peakedness. This impulsive nature of the
interference provides an opportunity to reduce its power.

Index Terms— Digital communications, electromagnetic in-
terference (EMI), impulsive noise, interchannel interference,
modulation, peakedness.

I. INTRODUCTION

Let us consider a simplified measuring setup shown in
Fig. 1. In the left-hand panel of the figure, the transmitter
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Fig. 1. Simplified setup for demonstration of the impulsive nature
of interchannel interference.

emits a single 1.2 GHz tone with the amplitude modulated
by a random raised cosine-shaped 10 Mbit/s message. As il-
lustrated in the upper right-hand panel, the total instantaneous
power of the in-phase and quadrature components of an in-
band quadrature receiver [1] is proportional to the squared
modulating signal. However, as shown in the lower right-
hand panel, the total instantaneous power in an out-of-band
receiver tuned to 1 GHz is an impulsive pulse train with

a multiple of 100 ns distance between the pulses. Note that
there is no apparent relationship between the magnitude of
the modulating signal and the magnitude of the pulses.

Referring to a signal as impulsive implies that the distri-
bution of the instantaneous power of the signal has a high
degree of peakedness relative to some standard distribution,
such as the Gaussian distribution. A common quantifier of
peakedeness would be, for instance, the excess kurtosis [2].
In this paper, however, we adopt the measure of peakedness
relative to a constant signal as the “excess-to-average power”
ratio, and use the units “decibels relative to constant”, or dBc.
This measure is explained in Appendix I.

II. IMPULSIVE NATURE OF INTERCHANNEL

INTERFERENCE

As shown in more detail in Appendix III, the signal com-
ponents induced in a receiver by out-of-band communication
transmitters can be impulsive. For example, if the receiver
is a quadrature receiver with identical lowpass filters in the
channels, the main term of the total instantaneous power of
in-phase and quadrature components resulting from such out-
of-band emissions may appear as a pulse train consisting of a
linear combination of pulses originating at discrete times and
shaped as the squared impulse response of these filters. For a
single transmitter, the typical intervals between those discrete
times are multiples of the symbol duration (or other discrete
time intervals used in the designed modulation scheme, for
example, chip and guard intervals). The non-idealities in
hardware implementation of designed modulation schemes
such as the non-smooth behavior of the modulator around
zero, also contribute to additional discrete origins for the
pulses. If the typical value of those discrete time intervals
is large in comparison with the inverse bandwidth of the
receiver, this pulse train will be highly impulsive.

The above paragraph can be restated using mathematical
notations as follows. The total emission from various digital
transmitters can be written as a linear combination of the
terms of the following form:

𝑥(𝑡) = 𝐴𝑇 (𝑡) e
i𝜔c𝑡 , (1)

where 𝜔c is the frequency of a carrier, 𝑡 = 2𝜋
𝑇 𝑡 is dimension-

less time, and 𝐴𝑇 (𝑡) is the desired (or designed) complex-
valued modulating signal representing a data signal with
symbol duration 𝑇 . Let us assume that the impulse response
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of the lowpass filters in both channels of a quadrature receiver
is 𝑤(𝑡) = 2𝜋

𝑇 ℎ(𝑡), and that the order of the filter is larger
than 𝑛 so that all derivatives of 𝑤(𝑡) of order smaller or
equal to 𝑛− 1 are continuous.1 Now let us assume that all
derivatives of the same order of the modulating signal 𝐴𝑇 (𝑡)
are finite, but the derivative of order 𝑛− 1 of 𝐴𝑇 (𝑡) has
a countable number of step discontinuities2 at {𝑡𝑖}. Then,
if Δ𝜔 = 2𝜋Δ𝑓 is the difference between the carrier and
the receiver frequencies, and the bandwidth of the lowpass
filter 𝑤(𝑡) in the receiver is much smaller than Δ𝑓 , the total
power in the quadrature receiver due to 𝑥(𝑡) can be expressed
as3

𝑃𝑥(𝑡,Δ𝑓) =
1

(𝑇 Δ𝑓)2𝑛

∑
𝑖

𝛼𝑖 ℎ (𝑡− 𝑡𝑖)
∑
𝑗

𝛼∗𝑗 ℎ (𝑡− 𝑡𝑗)

for 𝑇Δ𝑓 ≫ 1 , (2)

where 𝛼𝑖 is the value of the 𝑖th discontinuity of the order 𝑛−1
derivative of 𝐴𝑇 (𝑡),

𝛼𝑖 = lim
𝜀→0

[
𝐴

(𝑛−1)
𝑇 (𝑡𝑖 + 𝜀)−𝐴

(𝑛−1)
𝑇 (𝑡𝑖 − 𝜀)

]
∕= 0 . (3)

A typical value of 𝑡𝑖+1 − 𝑡𝑖 would be of the same order of
magnitude as 𝑇 . If the reciprocal of this value is small in com-
parison with the bandwidth of the receiver, the contribution
of the terms 𝛼𝑖𝛼

∗
𝑗ℎ (𝑡− 𝑡𝑖)ℎ (𝑡− 𝑡𝑗) for 𝑖 ∕= 𝑗 is negligible,

and (2) describes an impulsive pulse train consisting of a
linear combination of pulses shaped as 𝑤2(𝑡) and originating
at {𝑡𝑖}, namely

𝑃𝑥(𝑡,Δ𝑓) =
1

(𝑇 Δ𝑓)2𝑛

∑
𝑖

∣𝛼𝑖∣2 ℎ2 (𝑡− 𝑡𝑖)

for sufficiently large 𝑇 and Δ𝑓 . (4)

This pulse train is illustrated in Panel I of Fig. 2,
which shows simulated instantaneous total power response
of quadrature receivers tuned to 1GHz and 3GHz frequen-
cies (green and black lines, respectively) to an amplitude-
modulated 2GHz carrier of unit power. The squared im-
pulse response of the lowpass filter in the receiver channels
(30 MHz 5th order Butterworth filter [3]) is shown in the
upper right corner of the panel.

The modulating signal is shown in Panel II(a) of the
figure, and represents a random bit sequence at 10 Mbit/s
(𝑇 = 100 ns). In this example, a highly oversampled FIR
raised cosine filter [1] with roll-off factor 0.35 and group
delay 2𝑇 was used for pulse shaping. A rather small group
delay was chosen to make the discontinuities in the derivative
more visible in the figure. Panel II(b) of Fig. 2 shows the first
derivative of the modulating signal. This derivative exhibits

1In general, if 𝑛 is the order of a causal analog filter, then 𝑛− 1 is the
order of the first discontinuous derivative of its impulse response.

2One will encounter discontinuities in a derivative of some order in
the modulating signal sooner or later, since any physical pulse shaping is
implemented using causal filters.

3Equation (2) will still accurately represent the total power in the quadra-
ture receiver if the “real” (physical) modulating signal can be expressed as
𝐴(𝑡) = 𝜓(𝑡) ∗𝐴𝑇 (𝑡) , where the convolution kernel 𝜓(𝑡) is a low-pass filter
of bandwidth much larger than Δ𝑓 .
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Fig. 2. Panel I of the figure shows simulated instantaneous total
power response of quadrature receivers tuned to 1GHz and 3GHz
frequencies (green and black lines, respectively) to an amplitude-
modulated 2GHz carrier of unit power. The squared impulse re-
sponse of the lowpass filters in the receiver channels is shown in
the upper right corner of the panel. Panels II(a) and II(b) of the figure
show the modulating signal and its first derivative, respectively. For
the modulating signal shown in the figure, 𝑛 = 2 in (2). The lower
panel of the figure shows instantaneous total power response of a
quadrature receiver as a spectrogram in the time window 𝑤(𝑡) shown
in the upper left corner of the panel.

step discontinuities at the multiple of 𝑇 time intervals (at the
time ticks), and thus 𝑛 = 2 in (2).

It is important to notice that the impulsive pulse train
is not necessarily caused directly by the discontinuities in
the amplitude and/or phase of the transmitted signal, but
rather by the discontinuities in the higher order derivatives
of the modulating signal, and is generally unrelated to the
magnitude of the envelope and/or the peak-to-average ratio of
the transmitted signal. Thus, for instance, continuous phase
modulation (CPM), while generally reducing the magnitude
of the impulsive interference by increasing the order of the
first discontinuous derivative by one, does not eliminate the
effect altogether. This is illustrated in Appendix II.

When viewed as a function of both time and frequency,
the interpretation of (2) for the total power in a quadrature
receiver is a spectrogram [4] in the time window 𝑤(𝑡) of
the term 𝑥(𝑡) of the transmitted signal. Such a spectrogram
is shown in the lower panel of Fig. 2, where the hori-
zontal dashed lines indicate the receiver frequencies 1GHz
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and 3GHz used in Panel I.
For a quantitative illustration of the impulsive nature of the

out-of-band interference, the upper panel of Fig. 3 shows the
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Fig. 3. Upper panel shows peakedness in dBc of the instantaneous
total power response of a quadrature receiver as a function of
frequency. The horizontal dashed line corresponds to the peakedness
of a Gaussian distribution. The lower panel shows the total excess
(solid line) and average (dashed line) power in the receiver versus
frequency. The transmitted signal is a 2 GHz carrier amplitude-
modulated by a random 10 Mbit/s bit stream. The impulse re-
sponse 𝑤(𝑡) of the receiver and the pulse shaping of the modulating
signal are as in the example shown in Fig. 2.

peakedness of the instantaneous total power in a quadrature
receiver as a function of frequency for the example used in
Fig. 2. The peakedness of the out-of-band signal exceeds
the peakedness of the in-band signal by over an order of
magnitude.

The lower panel of Fig. 3 shows, for the same examples,
the total excess (solid line) and average (dashed line) power
in the receiver versus frequency. The excess power of the
out-of-band emissions is approximately 10 dB higher than the
average power.

Given the designed properties of the transmitted signal,
the out-of-band emissions can be partially mitigated by
additional filtering. For example, one can apply additional
high-order lowpass filtering to the modulating signal, or
band-pass filtering to the modulated carrier. However, the
bandwidth of those additional filters must be sufficiently
large in comparison with the bandwidth of the pulse shaping
filter in the modulator in order to not significantly affect the
designed signal. Within that bandwidth the above analysis
still generally holds, and the impulsive disturbances may
significantly exceed the thermal noise level in the receiver
even when the average power of the interference remains
below that level.

III. CONCLUSION

Non-smoothness of modulation can be caused by a variety
of hardware imperfections and, more fundamentally, by the

very nature of any modulation scheme for digital commu-
nications. This non-smoothness sets the conditions for the
interference in out-of-band receivers to appear impulsive.

If the coexistence of multiple communication devices in,
say, a smartphone is designed based on the average power
of interchannel interference, a high excess-to-average power
ratio of impulsive disturbances may degrade performance
even when operating within the specifications.

On the other hand, the impulsive nature of the interfer-
ence provides an opportunity to reduce its power. Since the
apparent peakedness for a given transmitter depends on the
characteristics of the receiver, in particular its bandwidth, an
effective approach to mitigating the out-of-band interference
can be as follows: (i) allow the initial stage of the receiver
to have a relatively large bandwidth so the out-of-band
interference remains highly impulsive, then (ii) implement the
final reduction of the bandwidth to within the specifications
through nonlinear means, such as the analog filters described
in [5], [6], [7], and [8]. In particular, intermittently nonlin-
ear filters described in [9] reduce the impulsive component
without detrimental effects on the transmitted message and
non-impulsive noise.

APPENDIX I
EXCESS-TO-AVERAGE POWER RATIO AS MEASURE OF

PEAKEDNESS

Consider a signal 𝑥(𝑡). Then the measure 𝐾c of its peaked-
ness in some time interval can be defined implicitly as the
excess-to-average power ratio〈

𝑥2(𝑡) 𝜃
[
𝑥2(𝑡)−𝐾c

]〉
=

1

2
, (5)

where 𝜃(𝑥) is the Heaviside unit step function, ⟨⋅ ⋅ ⋅ ⟩ denotes
averaging over the time interval, and 𝑥2(𝑡) = 𝑥2(𝑡)/⟨𝑥2(𝑡)⟩
is normalized instantaneous signal power. 𝐾c = 1 for
𝑥(𝑡) = const, and thus 𝐾dBc = 10 lg(𝐾c) expresses excess-
to-average power ratio in units of “decibels relative to con-
stant”.

For a Gaussian distribution, 𝐾c is the solution of

Γ

(
3

2
,
𝐾c

2

)
=

√
𝜋

4
, (6)

where Γ (𝛼, 𝑥) is the (upper) incomplete gamma func-
tion [10], and thus 𝐾c ≈ 2.366 (𝐾dBc ≈ 3.74 dBc).

APPENDIX II
DISCONTINUITIES IN CONTINUOUS PHASE MODULATION

For continuous phase modulation (CPM), equation (1) can
be re-written as

𝑥(𝑡) = 𝐴𝑇 (𝑡) e
i𝜔c𝑡 =

[
𝐴0 e

i(𝑇 Δ𝑓c)
∫ 𝑡
−∞d𝜏 𝑎𝑇 (𝜏)

]
ei𝜔c𝑡 , (7)

where Δ𝑓c is the frequency deviation. Then the derivative
of 𝐴𝑇 (𝑡) is

𝐴′𝑇 (𝑡) = i(𝑇 Δ𝑓c)𝐴𝑇 (𝑡) 𝑎𝑇 (𝑡) , (8)

and, if 𝑎(𝑛−2)
𝑇 (𝑡) contains discontinuities, so does 𝐴

(𝑛−1)
𝑇 (𝑡),

and the rest of the analysis of this paper holds.
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APPENDIX III
DERIVATION OF EQUATION (2)

Let us examine a short-time Fourier transform of a trans-
mitted signal 𝑥(𝑡) in a time window 𝑤(𝑡) = 2𝜋

𝑇 ℎ(𝑡) which
vanishes, along with all its derivatives, outside the inter-
val [0,∞[. We will let the window function 𝑤(𝑡) represent
the impulse response of an analog lowpass filter and be scaled
so that

∫∞
0
d𝑡 𝑤(𝑡) = 1.

The short-time (windowed) Fourier transform 𝑋(𝑡, 𝜔)
of 𝑥(𝑡) can be written as

𝑋(𝑡, 𝜔) =

∫ ∞

−∞
d𝜏 𝑥(𝜏)𝑤(𝑡− 𝜏) e−i𝜔𝜏

= 𝑤(𝑡) ∗ [𝑥(𝑡) e−i𝜔𝑡
]

= 𝑤(𝑡) ∗ [𝑥(𝑡) cos(𝜔𝑡)]− i𝑤(𝑡) ∗ [𝑥(𝑡) sin(𝜔𝑡)]
= 𝐼(𝑡, 𝜔) + i𝑄(𝑡, 𝜔) , (9)

where the asterisk denotes convolution, and
𝐼(𝑡, 𝜔) and 𝑄(𝑡, 𝜔) can be interpreted as the in-phase
and quadrature components, respectively, of a quadrature
receiver with the local oscillator frequency 𝜔 and the impulse
response of lowpass filters in the channels 𝑤(𝑡).

Let us use the notation for dimensionless time as 𝑡 = 2𝜋
𝑇 𝑡,

and consider a transmitted signal 𝑥(𝑡) of the form

𝑥(𝑡) = 𝐴𝑇 (𝑡) e
i𝜔c𝑡 , (10)

where 𝜔c is the frequency of the carrier, and 𝐴𝑇 (𝑡) is
the desired (or designed) complex-valued modulating signal
representing a data signal with symbol duration 𝑇 .

The windowed Fourier transform of 𝑥(𝑡) can be written as

𝑋(𝑡,Δ𝜔) =

∫ ∞

−∞
d𝜏 𝐴𝑇 (𝜏)𝑤(𝑡− 𝜏) eiΔ𝜔𝜏

=
2𝜋

𝑇

∫ ∞

−∞
d𝜏 [𝐴𝑇 (𝜏)ℎ (𝑡− 𝜏)]

[
d

d𝜏

eiΔ𝜔𝜏

iΔ𝜔

]
, (11)

where 𝜏 = 2𝜋
𝑇 𝜏 and Δ𝜔 = 2𝜋Δ𝑓 = 𝜔c − 𝜔. Since 𝑤(𝑡) and

all its derivatives vanish outside the interval [0,∞[, consecu-
tive integration by parts leads to

𝑋(𝑡,Δ𝑓) =
i𝑛

(𝑇 Δ𝑓)𝑛

∫ ∞

−∞
d𝜏 ei (𝑇 Δ𝑓) 𝜏 ×

d𝑛

d𝜏𝑛
[𝐴𝑇 (𝜏)ℎ (𝑡− 𝜏)] =

i𝑛

(𝑇 Δ𝑓)𝑛

∫ ∞

−∞
d𝜏 ei (𝑇 Δ𝑓) 𝜏 ×

𝑛∑
𝑚=0

(
𝑛

𝑚

)
⋅𝐴(𝑛−𝑚)

𝑇 (𝜏) ⋅ (−1)𝑚ℎ(𝑚) (𝑡− 𝜏) , (12)

where
(
𝑛
𝑚

)
= 𝑛!

(𝑛−𝑚)!𝑚! is a binomial coefficient
(“𝑛 choose 𝑚”).

To analyze the relative contributions of the terms in (12),
let us first consider the case where all derivatives of order
smaller or equal to 𝑛 − 1 of the window function 𝑤(𝑡)
are continuous, and all derivatives of the same order of
the modulating signal 𝐴𝑇 (𝑡) are finite, but the derivative
of order 𝑛 − 1 of 𝐴𝑇 (𝑡) has a countable number of step
discontinuities at {𝑡𝑖}:

𝛼𝑖 = lim
𝜀→0

[
𝐴

(𝑛−1)
𝑇 (𝑡𝑖 + 𝜀)−𝐴

(𝑛−1)
𝑇 (𝑡𝑖 − 𝜀)

]
∕= 0 . (13)

From (13), it follows that 𝐴(𝑛)
𝑇 (𝑡) has a piecewise continuous

component, as well as a singular component:

𝐴
(𝑛)
𝑇 (𝑡) =

∑
𝑖

𝛼𝑖 𝛿(𝑡− 𝑡𝑖)

+ (piecewise continuous function of 𝑡) , (14)

where 𝛿(𝑥) is the Dirac 𝛿-function [11].
The significance of (14) lies in the sifting (sampling)

property of the Dirac 𝛿-function:∫ ∞

−∞
d𝑥 𝛿(𝑥− 𝑥0)ℎ(𝑥) = ℎ(𝑥0) (15)

for a continuous ℎ(𝑥). Then substitution of (14) into (12)
leads to the following expression:

𝑋(𝑡,Δ𝑓) =
i𝑛

(𝑇 Δ𝑓)𝑛

[∑
𝑖

𝛼𝑖 ℎ (𝑡− 𝑡𝑖) e
i (𝑇 Δ𝑓) 𝑡𝑖

+

∫ ∞

−∞
d𝜏 ei (𝑇 Δ𝑓) 𝜏 × (continuous function of 𝜏)

]
. (16)

The second term in the square brackets is a Fourier trans-
form of a continuous function, and it becomes negligible in
comparison with the first term as the product 𝑇Δ𝑓 increases.
Thus, for the total power 𝑃 (𝑡,Δ𝑓) in a quadrature receiver,

𝑃𝑥(𝑡,Δ𝑓) = ∣𝑋(𝑡,Δ𝑓)∣2 ≈
1

(𝑇 Δ𝑓)2𝑛

∑
𝑖

𝛼𝑖 ℎ (𝑡− 𝑡𝑖)
∑
𝑗

𝛼∗𝑗 ℎ (𝑡− 𝑡𝑗)

for 𝑇Δ𝑓 ≫ 1 , (17)

which is equation (2) of Section II.
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