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Abstract

We describe the signMine algorithm, which relates
to methods for conditioning, representation, modeling,
and analysis of variables. In particular, signMine is
specially adapted for analysis of parametric line objects
such as human handwritten signatures. The paper also
gives an outline of the signMine software package
designed for performing signature identification and
verification.

1 Introduction

Consider a curve given in a parametric form
ξ(o) = ξx(o) + iξy(o), where o is some continuous order
parameter . It is convenient to call a representation
of a curve ‘kinematic’ when the order parameter is
a physical time t, ξ = ξ(t), and thus the curve can
be interpreted as the trajectory of a moving particle.
This trajectory can also be presented in a natural
(or intrinsic) form, for example in terms of its arc
length s and tangential angle ϕ(s) (Whewell equation),
or in terms of its arc length s and curvature κ(s)
(Cesàro equation). Such an intrinsic equation specifies
the shape of a curve, independent of any choice of
coordinates or parameterization [9], as a simple scalar
function of one argument. If a curve were indeed
representing a movement of a particle, the kinematics
of this motion can be specified, for example, by
providing the speed of the particle’s motion along the
curve, v(t) = ṡ(t) = |ξ̇(t)|.

The curvature and the arc length can be expressed
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as

κ(t) =
=[ξ̇∗(t) ξ̈(t)]
|ξ̇(t)|3 , and s(t) =

∫ t

0

dt′ |ξ̇(t′)| , (1)

where z∗ denotes the complex conjugate of z, and =[z]
is the imaginary part of z. The curve itself then can
be expressed as

ξ(s) = ξ0 +
∫ s

0

ds′ eiϕ(s′) , (2)

where the tangential angle ϕ is

ϕ(s) = ϕ0 +
∫ s

0

ds′ κ(s′) . (3)

Note that equation (1) is valid only for differentiable
and regular curves as it requires finite and nonvanishing
speed |ξ̇(t)|. This restriction makes equation (1)
unsuitable for description such irregular and
discontinuous curves as those representing human
handwriting, and renders this equation virtually
useless when those curves are given as discrete
(digital) records.

In this paper, we describe an algorithm which
enables accurate representation, in terms a natural
equation of the underlying continuous curve, of
a modulated curve given by a discrete sets of
ordered data. Further, we demonstrate how such
a representation leads to a set of tools for for
conditioning, analysis, comparison, and identification
of human handwritten signatures, and provide an
outline of the signMine software package.

2 Interpolation in order index

Consider a (raw) digital record which consists of
the sets of the Cartesian coordinates {ri} = {xi, yi},
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the time values {ti}, and the (optional) modulation
{f i}, where i = 0, 1, 2, . . . , N is an order index . It
is convenient to use a normalized order index o,
0 ≤ o = iN−1 ≤ 1, instead of an integer i. The
modulation vector f can be, for example, the
force (pressure) applied by the writing utensil,
the curve’s color, etc. The main purpose of
(smoothing) interpolation is to (re-)create a continuous
representation of a curve from its digital record. This
continuous representation must adequately correspond
to the raw digital record, and should be suitable
for expression in an intrinsic form. When such
a continuous (high resolution) record is available,
all parameter values along the interpolating curve
(the values of the Cartesian coordinates, arc length,
tangential angle, curvature, time, speed, modulation,
etc.) can be obtained with arbitrary precision. In
addition, interpolation allows the reduction of noise
and sensitivity to the size of sampling interval(s).

The simplest interpolation is a linear (broken-
line) interpolation, which amounts to connecting the
sequential points ri and ri+1 by straight-line segments
and corresponding definition of the values of the other
parameters (e.g., the speed and the tangential angle)
along those segments. Even though a broken-line
curve is not differentiable (and thus, for example,
the curvature is zero anywhere between vertices and
is infinite at a vertex joining a pair of non-parallel
segments), a proper handling of singularities allow its
intrinsic-form description, as illustrated in §3.

In a case of noisy finely-sampled data,
representation of a (piecewise) smooth curve
through a broken-line interpolation is misleading
and virtually useless. The main usage of the linear
interpolation is as follows: (i) obtain the vertices
(their coordinates as well as other parameters at
those points) by sampling the piecewise-smooth
tangential or smoothing interpolating curve, then
(ii) use the linear broken-line representation to obtain
the necessary descriptive parameters of the curve
suitable for numerical calculations.

2.1 ‘Tangential’ interpolation by a finite-size
continuous kernel

Given the values of a function y(x) at a set
of points {yi = y(xi)}, i = 0, 1, 2, . . . , N , the values
of y(x) and its various derivatives at arbitrary x can be
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Figure 1. Quadratic and cubic interpolating
kernels

determined through the following interpolation scheme:

dn

dxn
[y(x)− y0] =





∑N−1

i=0
∆yi

dn+1

dxn+1 H∆(x− xi)
if ∆xi = 0

∑N−1

i=0
∆yi
∆xi

dn

dxn [H∆(x− xi)−H∆(x− xi+1)]

otherwise

,

(4)

where ∆xi = xi+1 − xi, ∆yi = yi+1 − yi, and H∆(x) is
a continuous (differentiable) kernel such that

lim
∆→0

H∆(x) = x θ(x) . (5)

Also note that, as follows from equation (5),
lim∆→0 H ′

∆(x) = θ(x), and lim∆→0 H ′′
∆(x) = δ(x),

etc., and in the limit ∆ → 0, for ∆xi > 0, equation (4)
represents a simple linear interpolation. Figure 1
shows the quadratic and cubic interpolating kernels.

Notice that the interpolation scheme given by
equation (4) can handle discontinuous data (i.e.,
∆xi = 0), and does not require {xi} to be monotonic
(i.e., ∆xi can be negative). Thus it is suitable
for interpolating discontinuous and noisy data, as
illustrated in figure 2.

Figure 2. Interpolation of discontinuous and
noisy data
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Figure 3. Tangential interpolating curves
constructed using quadratic (upper panels)
and cubic (lower panels) kernels

If the width of a kernel does not exceed half of
the increment in the original order index (i.e., ∆o ≤
(2N)−1), interpolation leads to a smooth curve with
the following properties:

• the interpolating curve passes through a middle
point of each straight-line segment connecting a
pair of adjacent vertices while being tangential to
the respective segment at this point, and

• the tangential angle to the interpolating curve
changes monotonically between the middles of any
two adjacent segments of the broken line.

This is illustrated in figure 3 for interpolations using
quadratic (upper panels) and cubic kernel (lower
panels). Notice that in the righthand panels the
vertices i and i + 1 coincide forming a single vertex,
and that the interpolating curve passes through this
vertex.

A typical use of a tangential interpolation would
be in a case when accuracy of data acquisition is
achieved at the expense of the increase in the sampling
interval(s), which leads to a too ‘rugged’ shape of a
curve when a linear interpolation is used.

2.2 Smoothing interpolation

In a smoothing interpolation, the width of a kernel
exceeds half of the increment in the original order
index (i.e., ∆o > (2N)−1), and thus, as described
in §2.1, the values of the interpolating curve result
from a contribution of more than a single original data
point. A typical use of a smoothing interpolation is
the reduction of noise when the increase in sampling
frequency leads to the loss of accuracy in data
acquisition.

Figure 4. Tangential (upper panel) and
smoothing (lower panel) interpolations with
a quadratic kernel

Figure 4 illustrates both tangential (upper panel)
and smoothing (lower panel) interpolations with a
quadratic kernel. In both panels, the raw data is shown
in grey (in a form of linear broken-line interpolations),
and the interpolating curves are shown by black lines.

3 Description of a broken-line curve

3.1 Description of a piecewise-continuous
(segmented) curve

A curve z = x+iy resulting from human handwriting
(e.g., a signature) can consist of only one contiguous
component, or a plurality of components. In the latter
case, the order and relative positions of the components
might be relevant to verification and/or identification
of the curve. When the components are arranged in
‘chronological’ order (e.g., using an order parameter o,
0 ≤ o ≤ 1), we can preserve the information about their
order and relative positions by connecting the ends
of the ‘earlier’ components with the respective origins
of the ‘later’ components by straight-line segments.
In our description of a curve, we want the ability to
easily switch between the two representations of the
curve, including or excluding the connecting segments,
while preserving a unified formalism. We shall use the
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term ‘connected segmented curve’ when the straight-
line segments are included, and the term ‘disconnected
curve’ otherwise.

Differential displacement along a connected
segmented curve can be formally defined as

dl =
∣∣∣∣

d
do

z(o)
∣∣∣∣ do , (6)

where it is assumed that the derivatives at
discontinuities of z(o) can be expressed using the Dirac
δ-function [see 2, for example].

Differential displacement along a disconnected curve
is defined as

ds =
∣∣∣∣

d
do

z(o)
∣∣∣∣ do , (7)

where

d
do

z(o) =
1
2

(
d

do+
+

d
do−

)
z(o) , (8)

and dz
do+ and dz

do− are the right-hand and left-hand,
respectively, derivatives of z:

d
do± z(o) = lim

ε→0

z(o± ε)− z(o)
±ε

. (9)

It should be easy to see from equations (6) and (7)
that dl and ds are related as

dl = ds + δl(o) = ds + δl(s) , (10)

where

δl(x) = lim
ε→0

|z(x + ε)− z(x− ε)| , (11)

Note that dl ≡ ds anywhere within a continuous
component of the curve.

The total lengths of a disconnected and a connected
segmented curves, respectively, can be expressed as

S =
∫ 1

0

do
ds

do
, L =

∫ 1

0

do
dl

do
= S +

∑

i

δl(si) , (12)

where the summation goes over all points si where the
curve is discontinuous.

3.2 Robust (coincidence) segmentation of a
digitally-sampled curve

The formalism of §3.1 allows us do develop a
simple robust procedure for segmentation of a digital
record. Notice that, as follows from equation (11), the
differential δl is zero everywhere except at the ‘breaks’

between the continuous components. Let us define the
double differential δ2l as

δ2l(o) = lim
ε→0

δl(o + ε)− δl(o) , (13)

and point out that δ2l also vanishes at continuous
components while taking finite absolute values at
discontinuities.

Consider now a curve sampled at discrete values
of o, and the finite-difference equivalents of the
differentials δl and δ2l:

∆li = |z(oi+1)− z(oi)| , (14)

and

∣∣∆2li
∣∣ =

1
2

[|∆li+1 −∆li|+ |∆li −∆li−1|] . (15)

Notice that both ∆li and
∣∣∆2li

∣∣ will have pronounced
maxima whenever a discontinuity lies between oi

and oi+1. On the other hand, the extrema of ∆li will
correspond to the zeros of

∣∣∆2li
∣∣ at continuous portions

of the curve.
Thus a robust (coincidence) segmentation of a

digitally-sampled curve can be performed using
the following algorithm: Discontinuities can be
found as coincident maxima of ∆li and

∣∣∆2li
∣∣

lying above a certain threshold (or respective
thresholds). Since the number of discontinuities is
generally much smaller than the total number of the
data points in any meaningful digital record, a simple
choice for a threshold would be a high percentile of the
values of ∆li and/or

∣∣∆2li
∣∣.

Figure 5 illustrates the performance of the algorithm
on two curves with different sampling (see right-
hand panels). The panels on the left show the first
differential ∆li by the solid black line, the second
differential

∣∣∆2li
∣∣ by the solid gray line, and the

respective thresholds (90 th percentiles) by the dashed
lines. The discontinuous points are indicated by the
asterisks. In the right-hand panels, the data points
(dots) belonging to continuous portions of the curves
are connected by the black lines.

3.3 Intrinsic equation for a piecewise-continuous
curve

When the tangential angle is expressed as

φ(s) = lim
ε→0

arg [z(s + ε)− z(s− ε)] , (16)

where arg(z) is the (complex) argument of a complex
number z (see §3.3.1 below), an intrinsic (Whewell)

4



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

Order parameter

A
bs

. v
al

ue
s 

of
 fi

rs
t a

nd
 s

ec
. d

iff
er

en
tia

ls
 o

f a
rc

 le
ng

th

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

Order parameter

A
bs

. v
al

ue
s 

of
 fi

rs
t a

nd
 s

ec
. d

iff
er

en
tia

ls
 o

f a
rc

 le
ng

th

Figure 5. Robust (coincidence) segmentation of a digitally-sampled curve

equation of a piecewise-continuous curve can be written
as

z(s) =
∫ s

0

ds′ eiφ(s′) +
∑

i

δl(si) eiφ(si) θ(s− si) , (17)

where θ(x) is the Heaviside unit step function, and the
summation goes over all points si where the curve is
discontinuous.

The kinematic description is obtained by expressing
the arc length and the tangential angle as functions of
time,

z(t) =

∫ t

0

dt′ ṡ(t′) eiφ(t′) +
∑

i

δl(ti) eiφ(ti) θ(t− ti) , (18)

where the dot over s denotes a time derivative.

3.3.1 Quadrant-specific inverse tangent

The (complex) argument of a complex number z can
be computed as a quadrant-specific arctangent and

defined as follows:

arg(z) = arg(x + iy) =




arcsin(y/|z|) if x ≥ 0
− arcsin(y/|z|) + π if x < 0, y ≥ 0
− arcsin(y/|z|)− π if x < 0, y < 0

0 if |z| = 0

.
(19)

3.4 Scaling and alignment along the preferred
direction

There are many alternative definitions of such
factors as the size (total arc length), orientation, and
position of a curve in relation to the coordinates’
origin [see 7, for example]. For example, the definitions
of the center of a curve and its mean (or preferred)
direction can be defined in kinematic and/or geometric
sense, and will depend on whether the connecting
segments are included into consideration. It may be
argued that such factors by themselves are not relevant
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Figure 6. Defining the mean (or preferred) direction

to the curve’s verification and/or identification, even
though the differences in these factors due to different
definitions may serve as descriptive statistics.

The mean (or preferred) direction, φ, can be defined
in a variety of ways. For example, for a disconnected
curve it can be computed in geometric sense as

φ = φs = arg

(∫ S

0

ds eiφ(s)

)
, (20)

and its geometric meaning, as illustrated in figure 6 (a),
is the direction of a segment connecting the origin
and the end of a curve composed of concatenated
continuous components of the curve. The respective
kinematic definition is

φ = φt = arg

(∫ T

0

dt eiφ(t)

)
, (21)

and its geometric meaning is illustrated in figure 6 (b).
For a connected segmented curve, the preferred

direction can be expressed as

φ = φl = arg

(∫ S

0

ds eiφ(s) +
∑

i

δl(si) eiφ(si)

)
, (22)

and its geometric meaning, as shown in figure 6 (c), is
the direction of a segment connecting the origin and
the end of the curve.

As a sensible alternative, the preferred direction can
be defined as the direction of a vector connecting the
origin of a curve with its center, for example:

φ = αs = arg(zs) , zs =
∫ S

0
ds

(
1− s

S

)
eiφ(s) +

∑
i δl(si)

(
1− si

S

)
eiφ(si) ,

(23)

as shown in figure 6 (d).
A normalized aligned curve can be expressed in an

intrinsic form as

ξ(s) =

1
S

[∫ s

0
ds′ eiϕ(s′) +

∑
i δl(si) eiϕ(si) θ(s− si)

]
,

(24)

Figure 7. Example of a curve aligned along the
preferred direction defined by equation (26)

where ϕ(s) = φ(s) − φ. In polar coordinates, ξ(s) can
be written as

ξ(s) = r(s) eiα(s) , r(s) = 1
S |z(s)| ,

α(s) = arg [z(s)]− α ,
(25)

where z(s) is given by equation (17) and the preferred
direction α is defined as

α = arg

(∫ S

0

ds |z(s)|2 eiφ(s)

)
. (26)

An example of a curve aligned along the preferred
direction defined by equation (26) is shown in figure 7.

4 Circular and linear distributions and
the respective densities

4.1 Circular (angular) distributions and the
respective densities

The amplitude distribution of an angular (or cyclic
with the modulus 2π) variable ϕ = ϕ(s) can be
computed as

Ψs(β) =
1
S

∫ S

0

ds θ [β − ϕ(s)] , (27)
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where we can take, without loss of generality, the
range of ϕ(s) to be from −π to π. The distribution
function Ψs(β) can be given the following probabilistic
interpretation: if s is a uniform deviate in a range
0 to S, then Ψs(β) is the probability that ϕ(s) does
not exceed β.

In practice, the amplitude distribution Ψs(β) can be
computed as [see 5; 6, for example]

Ψs(β) =
1
S

∫ S

0

ds F∆D [β − ϕ(s)] , (28)

where F∆D(x) is a continuous function which changes
monotonically from 0 to 1 so that most of this change
occurs over some characteristic range of threshold
values ∆, and

lim
∆→0

F∆D(x) = θ(x) . (29)

The respective density is a periodic function

ψs(β) =
d
dβ

Ψ∗s(β) = ψs(β + 2πk) , (30)

where Ψ∗s(β) is defined as

Ψ∗s(β) = Ψs(β + 2πk)− k ,

−π(2k + 1) < β ≤ −π(2k − 1) ,
(31)

and k is an integer.

4.1.1 Examples of angular distributions

Several examples of angular distributions can be given
as follows:

Ψs(β) =
1
S

∫ S

0

ds θ [β − ϕ(s)] , (32)

Ψl(β) =
1
L

∫ L

0

dl θ [β − ϕ(l)] , (33)

Ψt(β) =
1
T

∫ T

0

dt θ [β − ϕ(t)] , (34)

where ϕ is the tangential angle, and

Ξs(β) =
1
S

∫ S

0

ds θ [β − α(s)] , (35)

Ξl(β) =
1
L

∫ L

0

dl θ [β − α(l)] , (36)

Ξs(β) =
1
T

∫ T

0

dt θ [β − α(t)] , (37)

where α is the polar angle of equation (25). Note
that equations (32), (33), (35), and (36) relate to the

geometric description of a curve, while equations (34)
and (37) relate to its kinematic description. Figure 8
shows the distributions, along with their respective
densities, given by equations (32) through (37) in the
left-half panels. Ψs, ψs, Ξs, and ξs are shown by the
solid black lines, Ψl, ψl, Ξl, and ξl are shown by the
gray lines, and Ψt, ψt, Ξt, and ξt are plotted by the
dashed black lines.

4.2 Linear distributions and the respective
densities

Various linear distributions and the respective
densities of a variable x = x(s) can be viewed
as different appearances of general modulated
distributions

Φ(D) =

∫ S

0
ds K(s)F∆D [D − x(s)]

∫ S

0
ds K(s)

(38)

and densities

φ(D) =
dΦ(D)

dD
=

∫ S

0
dsK(s) f∆D [D − x(s)]

∫ S

0
dsK(s)

, (39)

where K(s) is a unipolar modulating signal [see 6, for
example]. Various choices of the modulating signal
allow us to introduce different types of threshold
densities and impose different conditions on these
densities.

4.2.1 Examples of linear distributions

Several examples of linear distributions can be given as
follows:

Fs

(
t
T

)
= s(t)

S , Fl

(
t
T

)
= l(t)

L ,

Gs (χ) = 1
S

∫ S

0
ds θ

[
χ− r(s)

rmax

]
, and

Gt (χ) = 1
T

∫ T

0
dt θ

[
χ− r(t)

rmax

]
.

(40)

Figure 8 shows the distributions, along with their
respective densities, given by equation (40). Fs, fs,
Gs, and gs are shown by the solid black lines, Fl and fl

are shown by the gray lines, and Gt and gt are shown
by the dashed black lines.

Note that the interpolation scheme described in §2
allows easy numerical computation of the densities
from known distributions.
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Figure 8. Examples of angular and linear distributions and their respective densities

5 Descriptive statistics

We now have a variety of (equivalent)
representations of a curve, and the ability to
focus on its different features. For example, we can
separate geometric properties of the curve from its
kinematic properties, consider or disregard the order
and connectivity of contiguous components of the
curve, etc.

We can introduce many ‘direct’ comparison
measures, such as the ‘distance’ estimates, etc.
However, most of those measures would have a
computational complexity in O(N2). This is
appropriate for comparison and/or verification, but is
not suitable for identification and search.

We can also construct a variety of distributions of
the variables expressing a curve, and introduce a large
number of statistics for those distributions. We can
then characterize the curve in terms of those statistics
and/or distributions. This allows us to reduce both
the size of the inputs (by an order of magnitude or
more) and the computational complexity (to O(N)

or even O(log N)). It also enables a ‘hierarchical’
organization of search and retrieval.

Even though different forms of expressing a curve
may be equivalent, various distributions constructed
for different variables may be different in terms of
their ‘descriptive’ ability, and have different robustness
and selectivity with respect to different variations in
the curve (e.g., due to noise, discontinuities, singular
and/or improper points, etc.).

The main challenge is that the variations due to an
‘overall human factor’ are not known a priori . This
is why a database with self-learning capabilities is
required.

6 Goodness-of-fit tests

Note that even though the properties of the
threshold distributions and densities defined above
are usually associated with those of the probability
distributions and densities, the above definitions are
given for deterministic signals and do not rely on the
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Figure 9. Examples of comparison through two-sample statistics

usual axioms of probability and statistics. The formal
similarity of the latter with the probability functions,
however, allows us to explore probabilistic analogies
and interpretations. Such interpretations enable the
construction of a variety of ‘statistical’ estimators to
evaluate the similarity between a pair of variables in
a flexible way, permitting a meaningful adaptation to
particular problems [see 5; 6, for example].

6.1 Goodness-of-fit tests for linear distributions

As a measure of discrepancy between two
distributions, one can use such statistics as
Kolmogorov-Smirnov and Cramér-von Mises [see
1; 3, for example].

6.1.1 Two-sample Cramér-von Mises statistic

For two linear distributions F and G, the following
statistic of Cramér-von Mises type [see 1; 3, for
example] can be used:

γ2(F, G) =

3
2

∫∞
−∞d [F (x) + G(x)] W [F (x) + G(x)] [F (x)−G(x)]2 ,

(41)

where W is a (normalized) weight function and, if
both F and G are continuous, the integration may be
carried out with respect to either 2F or 2G instead of
F + G, since

∫ ∞

−∞
d [F (x)−G(x)] [F (x)−G(x)]2 = 0 . (42)

6.2 Goodness-of-fit tests for circular distributions

For circular distributions, one can use the circular-
invariant modifications of the Kolmogorov-Smirnov
and Cramér-von Mises tests [see 1, for example], such
as the Kuiper [4] and Watson [8] statistics.

6.2.1 Two-sample Watson statistic

Two-sample Watson statistic w2, 0 ≤ w2 ≤ 1, can be
defined as

w2(Ψ1, Ψ2) =

6
∫ π

−π
dβ ψ12(β) W [Ψ1(β) + Ψ2(β)] [Ψ1(β)−Ψ2(β)]2−

∆Ψ
2
12 ,

(43)
where W is a (normalized) weight function,
ψ12 = ψ1 + ψ2, and

∆Ψ12 =
√

3
∫ π

−π
dβ ψ12(β) W [Ψ1(β) + Ψ2(β)] [Ψ1(β)−Ψ2(β)] .

(44)

6.3 Percentile comparison for identification
and/or comparison

If qij is the statistic resulting from a similarity
(goodness-of-fit) test between i th and j th
distributions, then the similarity score assigned
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Figure 10. Examples of combined percentile comparison

to this value can be calculated as, for example,

Pij = P (qij) =
1

N2

N∑

k=1

N∑

l=1

θ (qkl − qij) , (45)

where the summation is carried out over all
distributions, and can be interpreted as the probability
to find a worse match between all available pairs of
distributions. It is assumed in equation (45) that the
statistic qij is a non-increasing measure of similarity.

Figure 9 provides an example of the matrices Pij

constructed for various distributions described in § 4.
Here, a sample of 45 signatures taken from 9 persons
(5 signatures per person) was used. Notice that

signatures taken from the same person consistently
exhibit high level of similarity (5-by-5 blocks along
the diagonals of the matrices) regardless the type of
the distribution, while the measures of similarity of
the signatures taken from different persons vary in
a wide range, depending on the distribution used.
Thus the total percentile comparison matrix P ij can
be constructed as a measure of central tendency of
the elements Pij calculated for different types of
distributions, and the ‘reliability’ of this estimate can
be calculated as the respective measure of dispersion.
Figure 10 provides an example of such a matrix P ij

calculated for the comparison matrices depicted in
figure 9.
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7 Example of online database of
handwritten signatures

This section gives an outline of a software package
for automated handwritten signature recognition,
verification, and mining, signMine, which includes
(i) signature acquisition tools, (ii) a searchable
signature database (the signMine engine), and
(iii) an online interface. The signMine package
currently supports pressure sensitive tablets which
allow recording both geometric (signature contours,
shapes, etc.) and kinematic/dynamic characteristics
(pressure, time stamps, etc.).

The signMine engine is a key component of the
software package, it includes the tools for generating
multiple distributions, the relational database, scoring
mechanisms, and decision making tools. Signature
databases are currently considered to be a part
of multimedia databases, and they differ from
traditional information databases based on textual
searching. This attributes to the fact that a text-
based query is computationally more efficient to
perform than the image analysis and comparison.
Since a database of signatures based on textual
searching alone is inadequate for a qualitative
analysis in the areas of biometrics and security, the
signMine implementation incorporates distinctions
based on the image data. Some of the components
of our solution include the server-based database
(a relational database), different types of image
acquisition tools (pressure sensitive tablets), signature
processing and classification algorithms (external
modules), and a web-based user interface (dynamically
generated web pages). signMine engine is a robust
and scalable technology designed to support behavioral
authentication mechanisms based on handwritten
electronic signatures for identification and verification.

The web-based interface has five basic modules:
login, upload, list, verify, and identify. The
database is protected against any unauthorized access
by the login module. After the successful login, the
user is given administrative rights to the upload and
list functions. The upload module allows the user
to upload a signature image providing a descriptive
keyword (e.g., a person’s name), and to choose a file
type from the drop down list (see figure 11). After
clicking submit, the web script updates the database
and generates all the necessary distributions for the
given image.

The list script creates a table, listing all the
data from the database. For signature images,
the data are listed in the form of thumbnails (see
figure 12). A button labelled regenerate is also

Figure 11. Screenshot of the upload module

Figure 12. Screenshot of the list module

available for administrative users to automatically
regenerate distributions for all signatures. This is
especially useful when a new classification feature is
added to signMine engine. By clicking regenerate,
all previously stored data are recalculated every
signature in the database. Images can be inspected
and deleted when necessary.

The only functions accessible to non-administrative
users are verify and identify, because they do
not alter the database. Identify is a module that
allows the user to upload a signature image, generate
distribution data, and compare the generated data

11



Figure 13. Screenshot of the identification
module

against the data of all images in the database. The
verification module collects the keyword label from the
user and compares the generated data against a limited
set of images. Both modules create a table displaying
the testing signature and listing the top ten signatures
from the database along with similarity ratings (see
figure 13).

8 Summary

In this paper, we provided an outline of the
signMine algorithm specially adapted for analysis of
parametric line objects such as human handwritten
signatures. This algorithm represents signatures given
by discrete data in terms of continuous quantities,
and enables novel approach to analysis of human
handwriting. We also provide a brief description of
a complete life-cycle software package for signature
identification and verification. The signMine engine
stands in the middle, it has image processing
tools and internal formats built-in and incorporated
with the database. The input data comes from
image acquisition devices like scanners or pressure-
sensitive tablets, the output is interfaced for other
applications (web systems, control systems, etc.).
In general, the signMine engine uses drivers to
integrate with many off-the-shelf image acquisition
devices and standardized software platforms, and
connectors to interface with legacy and commonly
used authentication systems and applications. The

signMine package will have applicability in all
areas where signature identification or verification is
desirable or required.
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