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Abstract— It has been shown that the performance of power
line communication (PLC) systems can be severely limited by
non-Gaussian and, in particular, impulsive interference from
a variety of sources. The non-Gaussian nature of this inter-
ference provides an opportunity for its effective mitigation by
nonlinear filtering. In this paper, we introduce blind adaptive
analog nonlinear filters, referred to as Adaptive Nonlinear
Differential Limiters (ANDLs), that are characterized by several
methodological distinctions from the existing digital solutions.
When ANDLs are incorporated into a communications receiver,
these methodological differences can translate into significant
practical advantages, improving the receiver performance in the
presence of non-Gaussian interference. A Nonlinear Differential
Limiter (NDL) is obtained from a linear analog filter by in-
troducing an appropriately chosen feedback-based nonlinearity
into the response of the filter, and the degree of nonlinearity is
controlled by a single parameter. ANDLs are similarly controlled
by a single parameter, and are suitable for improving quality
of non-stationary signals under time-varying noise conditions.
ANDLs are designed to be fully compatible with existing linear
devices and systems (i.e., ANDLs’ behavior is linear in the
absence of impulsive interference), and to be used as an
enhancement, or as a simple low-cost alternative, to the state-of-
art interference mitigation methods. We provide an introduction
to the NDLs and illustrate their potential use for noise mitigation
in PLC systems.

Index Terms— Analog nonlinear filters, cyclostationary noise,
impulsive noise, non-Gaussian noise, nonlinear differential lim-
iter (NDL), powerline communications (PLC).

I. INTRODUCTION

Distribution automation, a key feature of the Smart Grid
vision, relies on awareness and control of the state of the
entire power distribution network down to the home level.
The automation capabilities are enabled via reliable commu-
nication between smart meters at the customer locations and
the local/regional utility. Power line communication (PLC)
systems is an attractive choice for this “last mile” problem,
as it eliminates the need for new networking infrastructure
such as cables and antennas. Recently, there has been sig-
nificant interest in developing narrowband PLC systems in
the 3–500 KHz band, offering data rates up to 800 kbps. The
approval of the IEEE P1901.2 standard [1] in 2012, and
similar international (ITU-T G.hnem [2]) and industry driven
standards (PRIME and PLC G3 [3]), further demonstrate the
momentum in advancing PLC systems. While low-cost PLC
solutions are attractive, they also provide many challenges
for data communication. The medium and low voltage power
lines that were designed for power delivery exhibit complex
characteristics that vary in time, location and frequency. The

transformers and impedance mismatches across branching
points cause attenuation and multipath distortion. Powerline
noise is a key impairment of PLC systems and its modeling
and mitigation has attracted a lot of attention over the past
decade [4]–[6]. The power network itself works as an antenna
that captures various types of electromagnetic interference,
broadband as well as narrowband, and every connected load
(e.g., home and industrial appliances) running from the mains
injects noise that is typically non-Gaussian and impulsive.
Therefore, the noise affecting a PLC system strongly devi-
ates from the standard additive Gaussian noise assumption.
Various studies [6]–[8] have shown that, in the 3–500 KHz
band of interest, the dominant noise contribution is typically
an impulsive noise with strong cyclostationary features, and
cyclostationary impulse noise models have been incorporated
into the IEEE P1901.2 standard. Mitigation of such noise is
of considerable interest and is a focus of this work.

Non-Gaussian nature of impulsive noise provides an op-
portunity for its effective mitigation by nonlinear means,
for example, digital processing based on order statistics,
and various approaches to design of nonlinear receivers
with improved performance in the presence of impulsive
interference have been proposed. Many of these are model-
based approaches, which rely on theoretical or empirical
assumptions and models of interference distributions. For
example, the α-stable [9] and Middleton class A, B and C [10]
distributions are commonly used to model the interference
in wireline [11] and wireless [12] communications. In the
context of PLC, [13] and [14] also pursue a model-based
approach to mitigate cyclostationary impulse noise. Such
approaches, designed under specific interference model as-
sumptions, are often limited by parameter estimation schemes
(e.g. are sensitive to inaccuracies in obtaining derivatives) and
may not be robust under a model mismatch.

Alternative methods, that do not explicitly rely on noise
distribution models, have also been proposed. Those include
receiver designs based on flexible classes of distributions (e.g.
myriad filter [15], [16], Normal Inverse Gaussian (NIG) [17]),
or directly on the log-likelihood ratio shape (e.g. soft lim-
iter [18], hole puncher [19], p-norm [17], [20]). A straight-
forward technique to design a receiver that does not assume
a specific noise distribution (a blind receiver) is to apply a
memoryless nonlinearity to the input signal after sampling
data, as in [21]. This can be shown to be locally optimal in
low-SNR conditions [22], [23]. In [24], samples were either
clipped or blanked according to amplitude. The determination
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of the clipping threshold was based in detection theory and
relies only on an approximation of impulse arrival rate. Other
methods for applying nonlinearities have been investigated
in [25]. In addition to clipping, noise can be estimated and
subtracted, as in [26].

A common limitation of state-of-art digital nonlinear tech-
niques is that they are deployed after the analog-to-digital
converter (ADC), when the bandwidth is already reduced
and it is “too late” to deal with non-Gaussian interference
effectively [27], [28]. While this can be overcome by increas-
ing the sampling rate (and thus the acquisition bandwidth),
this further exacerbates the memory and DSP intensity of
numerical algorithms, making them unsuitable for real-time
implementation and treatment of non-stationary noise.

In this paper, we introduce a class of blind adaptive
analog nonlinear filters, referred to as Adaptive Nonlinear
Differential Limiters (ANDLs), that are characterized by
several methodological distinctions from the existing digital
solutions. The proposed approach is blind, as it does not
rely on any assumptions for the underlying noise distribution.
It is adaptive and can be tuned to operate efficiently in
the presence of nonstationary interference. Most importantly,
unlike prior approaches, the proposed filters is an analog
solution that enables efficient denoising of the received signal
before the ADC. ANDLs are nonlinear filters, and they
affect the signal of interest and non-Gaussian impulsive noise
disproportionally, allowing reduction of the spectral density of
such noise in the signal passband without significantly affect-
ing the signal of interest, thus increasing the signal-to-noise
ratio (SNR) in the signal passband. When ANDLs are incor-
porated into a communications receiver, these methodological
distinctions can translate into significant practical advantages,
improving the receiver performance in the presence of non-
Gaussian interference. Specifically, in the context of a PLC
system in the presence of impulse noise corresponding to the
models specified in IEEE P1901.2, we demonstrate that the
use of our ANDL approach can improve the overall signal
quality, with the effects ranging from “no harm” for low noise
conditions to over 10 dB improvement in the overall passband
SNR for high-power noise with strong impulsive component.

II. NDL BASICS

In this section, we provide a brief introduction to the NDLs.
More comprehensive descriptions of the NDLs, with detailed
analysis and examples of various NDL configurations, non-
adaptive as well as adaptive, can be found in [27], [29], [30].

A. Theoretical foundation of NDLs

For optimal mitigation of non-Gaussian interference by
nonlinear filters, it is imperative that the distributional proper-
ties of the interference are known, either a priori or through
measurements. The “blind” NDL-based approach outlined in
this paper arises from the methodology introduced in [31],
which relies on the transformation of discrete or contin-
uous signals into normalized continuous scalar fields with
the mathematical properties of distribution functions. This
methodology enables a variety of nonlinear signal processing

techniques that naturally incorporate the consideration of
such distributional properties, including those which have no
digital counterparts.

For example, the time-dependent amplitude distribution
Φ(D, t) of a continuous signal x(t) obtained in a time
window w(t) can be expressed as

Φ(D, t) = w(t) ∗ F∆D [D − x(t)] , (1)
where D is a threshold value, asterisk denotes convolution,
and F∆D(D) is a discriminator function that changes mono-
tonically from 0 to 1 in such a way that most of this change
occurs over some characteristic range of threshold values ∆D
around zero. Since Φ(D, t) can be viewed as a surface in the
three-dimensional space (t,D,Φ), the expression

Φ (Dq(t), t) = q, 0 < q < 1 , (2)

defines Dq(t) as a level (or contour) curve obtained from the
intersection of the surface Φ = Φ(D, t) with the plane Φ = q,
as illustrated in Fig. 1.

Fig. 1. Dq(t) as a level curve of the distribution function Φ(D, t).

An explicit (albeit differential) equation of the level curve
Dq(t) can be obtained by differentiating equation (2) with
respect to time (see, for example, [32], p. 551, eq. (4.29)),
leading to

dDq

dt
= −∂Φ(Dq, t)/∂t

φ(Dq, t)
+ν [q−Φ(Dq, t)], ν > 0 . (3)

In (3), φ(D, t) = ∂Φ(D, t)/∂D is the amplitude density of
x(t) in the time window w(t), and, since Φ(D, t) is a
monotonically increasing function of D for all t, the added
term in the right-hand side ensures the convergence of the
solution to the chosen quantile order q regardless of the initial
condition. It can be shown that, depending on the shape of
the discriminator function F∆D(D), equation (3) corresponds
to a variety of nonlinear filters with desired characteristics.
For example, in the limit ∆D → 0 equation (3) describes an
analog rank filter (e.g. a median filter for q = 1/2) in an
arbitrary time window w(t), leading, as illustrated below, to
the introduction of NDLs.

B. 1st order Canonical Differential Limiter

The digital median filter introduced in the early 1970s [33]
is a widely recognized tool for removing outlier (i.e.
impulsive) noise. From equation (4.6) in [31], an expression
for the output χ(t) of an “exact” (or “true”) analog median
filter in an exponential time window with the time constant τ0
can be written as

χ̇(t) = lim
α→0

1
2 −F2α [χ(t)− x(t)]∫ t

−∞ds exp
(
s−t
τ0

)
f2α [χ(t)− x(s)]

, (4)
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where x(t) is the input signal, F2α(x) is a discrim-
inator function with a characteristic width 2α, and
f2α(x) = dF2α(x)/dx is its respective probe. In equation (4),
F2α(x) and f2α(x) are such that limα→0 F2α(x) = θ(x) and
limα→0 f2α(x) = δ(x), where θ(x) is the Heaviside unit
step function [34] and δ(x) is the Dirac δ-function [35]. In
equation (4), the parameter α can be called the resolution
parameter.

Fig. 2. “Ramp” discriminator and its respective boxcar probe (upper
panel), and CDL time parameter τ = τ(|x− χ|) (lower panel).

Let us now choose a particularly simple discriminator
function with a “ramp” transition, such that the respective
probe will be a boxcar function, as illustrated in the upper
panel of Fig. 2. Since the main contribution to the integral in
the denominator of equation (4) will come from a relatively
close proximity to the point s = t, for a finite and sufficiently
large α such that |χ(t) − x(t)| generally remains smaller
than the resolution parameter α, except for relatively rare
outliers with a typical duration much smaller than τ0, the
denominator in equation (4) can be approximated by a
constant value equal to τ0/(2α). For a finite α equation (4)
becomes

χ = x− τ(|x− χ|) χ̇ , (5)

where the time parameter τ = τ(|x− χ|) is given by

τ(|x− χ|) = τ0 ×
{

1 for |x− χ| ≤ α
|x−χ|
α otherwise

, (6)

as illustrated in the lower panel of Fig. 2.
We shall call a filter described by equations (5) and (6)

a 1st order Canonical Differential Limiter (CDL). Note that
when the time parameter τ is a constant (e.g., in the limit
α→∞), equation (5) describes a 1st order linear analog
filter (RC integrator), wherein the rate of change of the
output is proportional to the difference signal x− χ. When
the magnitude of the difference signal |x− χ| exceeds the
resolution parameter α, however, the rate of change of the
output is proportional to the sign function of the difference
signal and no longer depends on the magnitude of the incom-
ing signal χ(t), providing an output insensitive to outliers
with a characteristic amplitude determined by the resolution
parameter.

C. Higher order and adaptive NDLs
A high-order analog linear lowpass filter would be typically

constructed as a 1st- (for odd-order filters) or 2nd- (for even-

order filters) order stage followed by cascaded 2nd order
stages, typically arranged from lowest to highest quality
factor. A similar approach can be taken to extend the previous
example to higher order NDLs. For example, a 3rd order NDL
can be constructed as a 1st order CDL followed by a 2nd order
linear filter, and a 4th order NDL – as a 2nd order NDL
(introduced below) followed by a 2nd order linear filter. It
may be practically unnecessary to cascade NDL stages, since
the main burden of removing outliers will be carried out by
the first stage, and the subsequent stages would be needed
only to provide a desired frequency and phase response for
the linear-regime NDL operation.

For even-order NDLs, a 2nd order NDL stage can be
introduced as follows. Let us consider a second order lowpass
stage that can be described by the differential equation

χ(t) = x(t)− τ χ̇(t)− (τQ)
2
χ̈(t) , (7)

where x(t) and χ(t) are the input and the output signals,
respectively (which can be real-, complex-, or vector-valued),
τ is the time parameter of the stage, Q is the quality factor,
and the dot and the double dot denote the first and the second
time derivatives, respectively.

For a linear time-invariant filter the time parameter τ and
the quality factor Q in equation (7) are constants, so that
when the input signal x(t) is increased by a factor of K,
the output χ(t) is also increased by the same factor, as is
the difference between the input and the output x(t)− χ(t)
(the difference signal). A transient outlier in the input signal
would result in a transient outlier in the difference signal of
a filter, and an increase in the input outlier by a factor of K
would result, for a linear filter, in the same factor increase in
the respective outlier of the difference signal. If a significant
portion of the frequency content of the input outlier is within
the passband of the linear filter, the output will typically
also contain an outlier corresponding to the input outlier, and
the amplitudes of the input and the output outliers will be
proportional to each other. A reduction (limiting) of the output
outliers, while preserving the relationship between the input
and the output for the portions of the signal not containing
the outliers, can be achieved by proper dynamic modification
of the filter parameters τ and Q in equation (7) based on the
magnitude (for example, the absolute value) of the difference
signal. A filter comprising such dynamic modification of the
filter parameters based on the magnitude of the difference
signal will be called an NDL.

Since at least one of the filter parameters depends on
the instantaneous magnitude of the difference signal, the
differential equation describing such a filter is nonlinear.
However, even though in general an NDL is a nonlinear filter,
if the parameters remain constant as long as the magnitude
of the difference signal remains within a certain range, the
behavior of the NDL will be linear during that time. Thus
an NDL can be configured to behave linearly as long as
the input signal does not contain outliers. By specifying
a proper dependence of the NDL filter parameters on the
difference signal it can be ensured that, when the outliers are
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encountered, the nonlinear response of the NDL limits the
magnitude of the respective outliers in the output signal.

A comprehensive discussion and illustrative examples
of various dependencies of the NDL parameters on the
difference signal can be found in [27]–[30]. As a particular
example, one can set the quality factor in equation (7) to a
constant value, and specify the time parameter τ as

τ(|x− χ|) = τ0 ×

{
1 for |x− χ| ≤ α(

|x−χ|
α

)β
otherwise

(8)

with β > 0. Parameter β in equation (8) controls the behavior
of the NDL in the presence of outliers – the larger its
value, the stronger the suppression of outliers. From practical
considerations, the value β = 1 (as in (6)) is convenient, so
we refer to the NDL with β = 1 as a Canonical Differential
Limiter (CDL).

As can be seen from equation (8), in the limit of a large
resolution parameter, α→∞, an NDL becomes equivalent to
the respective linear filter with τ = τ0 = const. This property
of an NDL enables its full compatibility with linear systems.
At the same time, when the noise affecting the signal of
interest contains impulsive outliers, the signal quality (e.g.
as characterized by a SNR, a throughput capacity of a
communication channel, or other measures of signal quality)
would exhibit a global maximum at a certain finite value of
the resolution parameter α = α0. As illustrated in the next
section, this property of an NDL enables its use for improving
the signal quality in the presence of impulsive noise, effec-
tively reducing the spectral density of the interference in the
signal passband without significantly affecting the signal of
interest.

The value of the resolution parameter that maximizes the
signal quality may vary widely depending on the composition
of the signal+noise mixture, for example, on the SNR and
the relative spectral and temporal structures of the signal and
the noise. Adaptive NDL (ANDL) configurations (see [27],
[29], [30]) contain a sub-circuit (typically characterized by
a gain parameter) that monitors a chosen measure of the
signal+noise mixture and provides a time-dependent resolu-
tion parameter α = α(t) to the main NDL circuit, making
it suitable for improving quality of non-stationary signals
under time-varying noise conditions. While a specific choice
of an ANDL adaptation scheme would be driven by the
considerations of the respective temporal structures of the
noise and of the signal of interest, in the examples of the next
section we use an extremely simplified adaptation approach.
In particular, the resolution parameter is obtained by applying
a gain to the “base” value given by a robust measure of central
tendency (the median) of the magnitude of the difference
signal, obtained on a relatively large time scale (i.e., much
larger than the AC line frequency), and the value of the gain
is then chosen to maximize the passband SNR.

III. PERFORMANCE OF NDLS

In this section, we provide an overall qualitative illustration
of the applicability of NDLs for noise mitigation in powerline

communication systems. We do not attempt a direct quan-
titative comparison between the performance of NDLs and
other methods, since for nonlinear filters quantitative results
would vary greatly depending on the details of particular
compositions of the signal+noise mixtures.

In the examples that follow we use a rather simplistic
model that captures the essential features of the PLC noise
such as its impulsive and cyclostationary nature. In particular,
we use noise mixtures consisting of three basic components:
(1) a background Gaussian component (with the power
spectrum density decaying at an approximate rate of 30 dB
per 1 MHz), (2) cyclostationary exponentially decaying noise
“bursts” with the repetition frequency at twice the AC line
frequency and a typical duration ranging from hundreds of
microseconds to a few milliseconds, and (3) random short
(e.g., several microseconds) impulsive bursts with normally
distributed amplitudes and typical interarrival times of order
of 100µs. In this simplified model, we intentionally omit
the vagaries of a particular noise that may be encountered
in practice (such as, for example, presence of narrow-band
interferers and a more complicated spectral and temporal
structure), since those would not significantly affect the
qualitative behavior of NDLs in the context of their overall
effect on the passband SNR.

When we vary the total noise power in a particular
example, we keep the power of the background Gaussian
component at a chosen constant value, and thus the increase
in the noise power is entirely due to the increase in the
impulsive (cyclostationary+random) noise component. Fur-
ther, we preserve the composition of the impulsive noise in
terms of the relative powers of its cyclostationary and random
components.

Since we focus on the passband SNR as a signal quality
indicator, a particular modulation protocol is of little rele-
vance, and we assume that the signal of interest is just a band-
limited white Gaussian noise. In particular, in the examples
that follow, the signal of interest is a white Gaussian noise
limited to the 42–89 kHz band, which would correspond to
an OFDM signal of PRIME [3].

As an NDL filter, we use a 3rd order NDL constructed as
a 1st order CDL with τ0≈0.9µs, followed by a 2nd order
linear filter with the time parameter τ=τ0 and the quality
factor Q=1. Thus in the limit α → ∞ this NDL becomes
a 3rd order Butterworth filter with the frequency cutoff at
approximately 178 kHz, or twice the highest frequency of
the signal of interest. As the base resolution parameter for
the CDL, we take the median of the absolute value of the
difference between the input signal+noise mixture and the
signal+noise mixture filtered by a 1st order linear lowpass
filter with τ=τ0 (thus corresponding to the CDL in the limit
α → ∞). Then the CDL resolution parameter α is obtained
by multiplying this base value by some positive gain.

Given a particular signal+noise mixture as the NDL input,
let us first consider, as illustrated in Fig. 3, the SNRs obtained
in the signal passband for the NDL outputs. In this example,
the power of the background noise in the signal passband is
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one tenth of that of the signal, corresponding to the 10 dB
passband SNR. In Fig. 3, the horizontal colored dashed lines
indicate the “linear” SNRs, that is, those obtained without
NDL filtering. These are shown for various levels of added
impulsive noise component, ranging from zero (i.e., purely
Gaussian noise equal to the background noise) to 99 times
the power of the background noise (resulting in the −10 dB
SNR). The solid curves of the respective colors correspond
to the SNRs (as functions of the gain applied to the base
resolution parameter) obtained for the NDL outputs. As one
can see, while asymptotically approaching the linear SNR
values in the limits of large resolution parameters, the SNRs
for the NDL outputs exhibit global maxima at certain values
of the resolution parameter gains, and these maxima are the
more pronounced the stronger the impulsive component.

Fig. 3. Passband SNRs as functions of gain applied to the “base” resolution
parameter.

If the NDL resolution parameter is set to correspond to
the SNR maximum, we can plot such maximum SNRs as
a function of the total noise power, as illustrated in the
lower panel of Fig. 4. In this panel, the solid black line
corresponds to the linear SNR, and the colored lines plot the
NDL SNRs for the noise with three different cyclostationary
time structures. In particular, the green line corresponds to
“narrow” (∼ 100µs) cyclostationary noise bursts, the blue
line corresponds to “mid-range” (∼500µs), and the red line
– to “wide” (∼ 2.5 ms) bursts. One may note that narrower
cyclostationary noise bursts would result in higher peakedness
of the noise, that is, in a more impulsive noise. This is
illustrated in the upper panel of Fig. 4, which provides
time-domain snapshots of the input noise observed for the
0 dB passband SNR (that is, for the passband power of the
impulsive component 9 times that of the background noise),
and plotted in the colors corresponding to the SNR curves.
The noise peakedness is measured in units of “decibels
relative to Gaussian” (dBG), in terms of kurtosis in relation
to the kurtosis of the Gaussian distribution [28], [30], and
is indicated next to the noise traces by the text of the
respective color. Thus one may observe from Fig. 4 that
NDLs would provide larger SNR improvement for relatively
stronger impulsive noise. Likewise, since the signal of interest
itself is characterized by low peakedness, it would reduce
the overall peakedness of the signal+noise mixture. Thus the
potential relative SNR improvement provided by NDLs would
be generally more significant at low SNR conditions.

Fig. 5 provides an example of passband noisy signal traces

Fig. 4. SNRs as functions of total noise power (lower panel), and snapshots
of time-domain input noise traces observed for 0 dB passband SNR (upper
panel).

Fig. 5. Example of passband noisy signal traces obtained without (red
line) and with NDL (blue line).

obtained without (red line) and with NDL (blue line) for the
4 dB total passband noise power, and for the “mid-range”
(∼ 500µs) cyclostationary bursts duration (as indicated by
the asterisk on the blue SNR curve in the lower panel of
Fig. 4). For comparison, the traces shown by the green
lines correspond to the signal affected by the background
(Gaussian) noise only. One should be able to see that in the
absence of impulsive bursts the NDL behavior corresponds to
that of a linear filter. During the impulsive bursts, however, the
dynamics of the NDL changes, resulting, for an appropriately
chosen resolution parameter, in disproportionally stronger
overall suppression of the noise relative to the signal of
interest, and thus leading to the increase in the passband SNR.

A. Comment on pre-filtering and NDL use methodology

As discussed in our prior work [27]–[30], the distribu-
tions of non-Gaussian signals are generally modifiable by
linear filtering, and non-Gaussian interference can often be
converted from sub-Gaussian into super-Gaussian, and vice
versa, by linear filtering (that may or may not affect the
signal of interest). Thus employing appropriate linear filtering
preceding an NDL in a signal chain can greatly improve
effectiveness of NDL-based interference mitigation. While
we have previously outlined several approaches to such
distribution modification by Linear Front End (LFE) filtering,
and to identifying non-Gaussian components in an interfering
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signal [27], [29], the development of systematic procedures
for identification of non-Gaussian interference components
and for design of suitable LFE filtering remains a challenging
task that is a subject of ongoing research.

IV. CONCLUSION

In this paper, we introduce blind adaptive analog nonlinear
filters, referred to as Adaptive Nonlinear Differential Limiters
(ANDLs), and demonstrate their potential use for noise miti-
gation in PLC systems. ANDL can be used either as a stand-
alone simple and inexpensive impulsive noise reduction tool,
or in combination with other interference mitigation methods.
When used alone, ANDLs can provide improvement in the
overall signal quality ranging from “no harm” for low noise
conditions to over 10 dB improvement in the overall passband
SNR for high-power noise with strong impulsive component.
While the quantitative results may vary significantly with
the signal+noise compositions encountered in practice, and
with a particular choice of an NDL and its linear pre-
filtering stage, the NDLs’ ability to disproportionally reduce
the PSD of impulsive noise in the signal passband provides an
opportunity for noise mitigation in PLC systems that deserves
further investigation.
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